001     887694
005     20220930130257.0
024 7 _ |a 10.1016/j.cortex.2020.08.012
|2 doi
024 7 _ |a 0010-9452
|2 ISSN
024 7 _ |a 1973-8102
|2 ISSN
024 7 _ |a 2128/26131
|2 Handle
024 7 _ |a 33065515
|2 pmid
024 7 _ |a WOS:000588059000032
|2 WOS
037 _ _ |a FZJ-2020-04355
082 _ _ |a 610
100 1 _ |a Pläschke, Rachel N.
|0 P:(DE-Juel1)161305
|b 0
|e Corresponding author
245 _ _ |a Age differences in predicting working memory performance from network-based functional connectivity
260 _ _ |a New York, NY
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605254262_11844
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This study was supported by the Deutsche Forschungsgemeinschaft (DFG), contract grantnumbers: EI 816/4-1, LA 3071/3-1; the National Institute of Mental Health, contract grantnumber: R01-MH074457; the Helmholtz Association Theme “Supercomputing and Modelingfor the Human Brain”; and the European Union’s Horizon 2020 Research and InnovationProgramme, contract grant number: 7202070 (HBP SGA1).
520 _ _ |a Deterioration in working memory capacity (WMC) has been associated with normal aging, but it remains unknown how age affects the relationship between WMC and connectivity within functional brain networks. We therefore examined the predictability of WMC from fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically defined functional brain networks and the connectome in young and old adults using relevance vector machine in a robust cross-validation scheme. Particular brain networks have been associated with mental functions linked to WMC to a varying degree and are associated with age-related differences in performance. Comparing prediction performance between the young and old sample revealed age-specific effects: In young adults, we found a general unpredictability of WMC from RSFC in networks subserving WM, cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory, whereas in older adults each network significantly predicted WMC. Moreover, both WM-related and WM-unrelated networks were differently predictive in older adults with low versus high WMC. These results indicate that the within-network functional coupling during task-free states is specifically related to individual task performance in advanced age, suggesting neural-level reorganization. In particular, our findings support the notion of a decreased segregation of functional brain networks, deterioration of network integrity within different networks and/or compensation by reorganization as factors driving associations between individual WMC and within-network RSFC in older adults. Thus, using multivariate pattern regression provided novel insights into age-related brain reorganization by linking cognitive capacity to brain network integrity.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 1
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 1
|u fzj
700 1 _ |a Cieslik, Edna C.
|0 P:(DE-Juel1)131855
|b 2
|u fzj
700 1 _ |a Nostro, Alessandra D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Varikuti, Deepthi P.
|0 P:(DE-Juel1)161460
|b 4
700 1 _ |a Plachti, Anna
|0 P:(DE-Juel1)167223
|b 5
|u fzj
700 1 _ |a Lösche, Patrick
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 7
|u fzj
700 1 _ |a Kalenscher, Tobias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 9
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.cortex.2020.08.012
|g Vol. 132, p. 441 - 459
|0 PERI:(DE-600)2080335-7
|p 441 - 459
|t Cortex
|v 132
|y 2020
|x 0010-9452
856 4 _ |u https://juser.fz-juelich.de/record/887694/files/OAD0000070190.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/887694/files/1-s2.0-S0010945220303142-main.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/887694/files/OAD0000070190.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/887694/files/Pl%C3%A4schke_et_al_MS_CORTEX_R2.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/887694/files/Pl%C3%A4schke_et_al_Predictions_WM_Aging_Supplement.pdf
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/887694/files/1-s2.0-S0010945220303142-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:887694
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167223
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CORTEX : 2018
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21