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Abstract 1 

 2 

Deterioration in working memory capacity (WMC) has been associated with normal aging, 3 

but it remains unknown how age affects the relationship between WMC and connectivity 4 

within functional brain networks. We therefore examined the predictability of WMC from 5 

fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically 6 

defined functional brain networks and the whole-brain connectome in young and old adults 7 

using relevance vector machine in a robust cross-validation scheme. Particular brain 8 

networks have been associated with mental functions linked to WMC to a varying degree 9 

and are linked to age-related differences in performance. Comparing prediction 10 

performance between the young and old sample revealed age-specific effects: In young 11 

adults, we found a general unpredictability of WMC from RSFC in networks subserving WM, 12 

cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory, 13 

whereas in old adults each network significantly predicted WMC. Moreover, both WM-14 

related and WM-unrelated networks were differently predictive in older adults with low- 15 

versus high-WMC. These results indicate that the within-network functional coupling during 16 

task-free states is particularly strongly related to individual task performance in advanced 17 

age, suggesting neural-level reorganization. In particular, our findings support the notion of a 18 

decreased segregation of functional brain networks, deterioration of network integrity 19 

within different networks and/or compensation by reorganization as factors driving 20 

associations between individual WMC and within-network RSFC in older adults. Thus, using 21 

multivariate pattern regression provided novel insights into age-related brain reorganization 22 

by linking cognitive capacity to brain network integrity. 23 

 24 
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1. INTRODUCTION 28 

Decline in various cognitive and executive functions has been recognized as a part of normal 29 

aging (Glisky, 2007; Salthouse et al., 2003). In particular, age-related deterioration in working 30 

memory (WM) functionality, that is, the capability to temporarily maintain, update and 31 

manipulate information, has received increased attention (Braver & West, 2008). WM 32 

decline has been addressed in a majority of cognitive aging theories (Park & Festini, 2017) 33 

and is considered a source of age-related deficits in a wide range of cognitive tasks (Gazzaley 34 

et al., 2005; Park et al., 1996; Salthouse, 1991) and social-affective behaviors (Moran, 2013; 35 

Opitz et al., 2012).  36 

While the neural underpinnings of age-related deficits in cognitive functions were found to 37 

be associated with activation differences in task-related brain networks (Cabeza et al., 38 

2016a; Hedden, 2007; Nielson et al., 2006), several findings have demonstrated that age-39 

related WM decline may in part be accounted for by changes in resting-state functional 40 

connectivity (RSFC) architecture of the brain (Charroud et al., 2016; Jockwitz et al., 2017; 41 

Sala-Llonch, Arenaza-Urquijo, et al., 2012). It remains unclear, however, to which extent 42 

neuro-behavioral features of aging manifest in individual differences in WM capacity (WMC) 43 

associated with variations in interregional coupling at rest across different cognitive 44 

networks. To investigate how WM performance relates to other cognitive systems in an 45 

aging population prone to WM decline is particularly interesting as it has been shown that 46 

WMC is strongly associated with variations among other executive functions (Courtney, 47 

2004; Miyake et al., 2000) as well as constitutes an underlying executive function in a broad 48 

range of higher-order cognitions including language comprehension and reasoning (Kane, 49 

Conway, Hambrick, et al., 2007). Hence, shared neuro-behavioral variance can be expected 50 

among executive and higher-order cognitive functions that are regulated by the degree 51 
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these functions depend on WMC. This interplay may potentially be affected by variation in 52 

WMC in older adults that associate with neural-level reorganization as previously reported 53 

for age-related brain-behavior relationships (Grady, 2012; Sala-Llonch et al., 2015). It is, 54 

however, still unclear which role RSFC within brain networks related to different aspects of 55 

cognitive function may play as a marker of individual WMC, raising the question whether 56 

RSFC within these networks can be considered (equally) informative about individual WMC 57 

and how this relationship may change with age.  58 

Here we addressed this question by taking a novel approach leveraging the power of 59 

coordinate-based meta-analyses (Eickhoff et al., 2016; Müller et al., 2018) to robustly define 60 

regions of the brain that are consistently recruited across dozens to hundreds of 61 

neuroimaging studies examining a particular mental function. In turn, in the commonly used 62 

data-driven approach to define networks from whole-brain RSFC data by means of 63 

independent component analysis (ICA), the mental functions that get associated with these 64 

networks are usually derived via reverse inference, as there is no a priori knowledge about 65 

the mental functions these networks subserve (Poldrack, 2011). Although the ICA-based 66 

approach has yielded stable and reproducible resting-state networks, the networks are 67 

usually defined from the same data set as used for the subsequent analysis (Cole et al., 68 

2010). In contrast, our meta-analytically derived network model approach offers an a priori, 69 

unbiased definition of nodes forming a functional network, among which RSFC may then be 70 

computed for individual participants (cf. Pläschke et al., 2017; Schilbach et al., 2014; Varikuti 71 

et al., 2016). That is, meta-analyses provide robust information on the most likely location of 72 

the brain network underlying a task by integrating over task-activation findings based on 73 

hundreds of participants. Such a network can then be used to study individual RSFC 74 

connectivity profiles, which in turn can be linked to specific cognitive processes. Given that 75 
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mental functions should best relate to interactions between multiple regions (Genon et al., 76 

2018), we assume that the pattern of within-network connectivity may capture a substantial 77 

degree of inter-individual differences in cognitive performance. Using machine-learning 78 

(ML)-based regression methods, previous studies have successfully predicted cognitive 79 

performance from RSFC distributed across the brain (Rosenberg et al., 2016) and revealed 80 

age effects in the prediction of executive functions from connectivity profiles between 81 

specific resting-state networks (La Corte et al., 2016). In the current work we employed the 82 

relevance vector machine (RVM; Tipping, 2001) in order to identify the relationship between 83 

input features (here: RSFC within a predefined functional network) and a continuous target 84 

variable (here: WMC score). The capability of such an approach to predict individual WMC in 85 

previously unseen subjects was evaluated using a repeated cross-validation scheme, yielding 86 

a scalar measure of average prediction performance for each network. To investigate the 87 

relationship between functional network integrity and WM performance and resolve the 88 

above-mention question about network specificity (see also Pläschke et al., 2017), we here 89 

examined five different meta-analytically defined networks. To investigate how these 90 

relationships were affected by age, we compared prediction performance in young and old 91 

samples. The five networks comprised: WM (Rottschy et al., 2012), cognitive action control 92 

(CogAC; Cieslik, Mueller, Eickhoff, Langner, & Eickhoff, 2015), vigilant attention (VigAtt; 93 

Langner & Eickhoff, 2013), theory-of-mind cognition (ToM; Bzdok et al., 2012), and semantic 94 

memory (SM; Binder, Desai, Graves, & Conant, 2009). Importantly, the WM network reflects 95 

consistent neural recruitment during WM tasks that primarily demand recognition-related 96 

processes, such as the n-back paradigm, rather than tapping free retrieval-under-97 

interference processes as examined via complex WM span tasks (Kane, Conway, Miura, et 98 

al., 2007). 99 
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The choice of these networks was based on our intent to cover a range of functional systems 100 

that are functionally (and neurally) either closely or only broadly related to WM (Chun, 2011; 101 

Diamond, 2013; Mutter et al., 2006; Nyberg et al., 2003; Unsworth et al., 2014). WM, CogAC, 102 

and VigAtt networks are representatives of executive function networks closely related to 103 

WM, whereas ToM and SM networks are linked to higher-order cognitive processes involving 104 

reasoning and language comprehension (i.e., more broadly associated with WM). Thereby, 105 

the ToM network is linked to social reasoning, and the SM network is linked to semantic 106 

memory/processing and associated with language comprehension (Martin & Chao, 2001; 107 

Van Overwalle, 2009). Given that several lower-level sub-processes contribute to higher-108 

level executive functioning (Miyake et al., 2000; Müller et al., 2015), it may be argued that 109 

networks associated with the former may predict WMC better than do higher-order 110 

networks.  111 

In addition, three WM-unrelated (‘’control’’) meta-analytic networks were included to assess 112 

whether WMC predictability is specifically associated with the above-mentioned cognitive 113 

networks closely or broadly related to WM. These control networks were linked to task-114 

negative, social-affective and introspective processes, as well as motor and sensory 115 

processes. In particular, the three networks comprised (i) the extended social-affective 116 

default network (eSAD; Amft et al., 2015), (ii) a combined motor network associated with 117 

finger tapping and prosaccade eye movements (Motor+PS; Cieslik, Seidler, Laird, Fox, & 118 

Eickhoff, 2016; Witt, Meyerand, & Laird, 2008), and (iii) a combined motor-sensory network 119 

linked to finger tapping and hand stimulation/somatosensory processing (Motor+SS; Lamp et 120 

al., 2019; Witt et al., 2008). These motor-sensory systems are strongly interconnected 121 

compared to large-scale cognitive networks with transitions between network boundaries, 122 

and converge less with fronto-parietal cognitive areas (Cieslik et al., 2016; Fox & Raichle, 123 
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2007; Yeo et al., 2011). While the coupling between the default-mode and WM networks has 124 

been associated with WM performance (Keller et al., 2015; Piccoli et al., 2015), the eSAD 125 

network is strongly involved in social-affective and introspective processes (Amft et al., 126 

2015). Hence, it may be positioned between (broadly) WM-linked networks and WM-127 

unrelated control networks. For all three ‘’control’’ networks, age-related functional 128 

connectivity changes have been reported (Chan et al., 2014, 2017; Roski et al., 2013; Wang 129 

et al., 2010). Furthermore, we combined all individually investigated networks (related to 130 

cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory 131 

as well as eSAD) with the WM network to assess the predictability of intra- and inter-132 

network connectivity. To further expand on this, we also examined predictability based on a 133 

connectome-wide network of 264 functional areas (Power et al., 2011), in order to compare 134 

the performance of the whole-brain connectome with that of our “sparse” functional 135 

networks and network combinations. 136 

Previous findings and theories strongly suggest a general factor involved in age-related 137 

cognitive decline across several domains (Gazzaley et al., 2005; Mather, 2016; Moran, 2013; 138 

Park et al., 1996; Salthouse, 1991), which can partly be attributed to a general slowing in 139 

information processing (Salthouse, 1996; Salthouse, 1994). This, in turn, may possibly be 140 

related to a dedifferentiation/decreased segregation of functional networks (Chan et al., 141 

2014, 2017; Goh, 2011; Roski et al., 2013; Sala-Llonch et al., 2015). Alternatively, 142 

performance decline with age might reflect a global age-related deterioration in network 143 

integrity, observable across various functional networks throughout the brain (Varangis et 144 

al., 2019; Zonneveld et al., 2019). Either or both of these network-related changes should 145 

result in less specific associations between performance and RSFC within any given network 146 

in advanced age. We, therefore, hypothesized similar predictive power across different 147 
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networks with advanced age, as compared to greater network specificity in young adults, for 148 

whom we expected to find better prediction performance in networks more closely related 149 

to WM processing. Such an age-related “broadening” (i.e. network non-specificity) of WMC 150 

predictability should not only apply to distinct though related brain systems but might as 151 

well extend to WM-unrelated networks. 152 

 153 

 154 

2. MATERIALS AND METHODS 155 

2.1 Sample 156 

In the following we report how we determined our sample size, all data exclusions (if any), 157 

all inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to 158 

data analysis, all manipulations, and all measures in the study. Resting-state functional 159 

magnetic resonance imaging (fMRI) data of 50 young (age range: 20 – 34 years) and 45 old 160 

(age range: 51 – 71 years) participants were acquired at the Research Centre Jülich, 161 

Germany. For this explorative study, we did not estimate predictability effect sizes a priori 162 

for determining sample size. Participants did not report any present or past psychiatric or 163 

neurological disorders (including dementia), as assessed in a structured interview. Older 164 

adults’ cognitive performance was age-adequate as evaluated by the Mild Cognitive 165 

Impairment and Early Dementia Detection assessment (DemTect; Kalbe et al., 2004; scores 166 

13-18: age-adequate cognitive performance). None of the participants showed clinically 167 

relevant symptoms of depression as evaluated via the Beck Depression Inventory-II (all BDI-II 168 

scores < 13; Beck, Steer, & Brown, 1996). For further sample characteristics, please see Table 169 

1. Written informed consent was obtained from all participants before entering the study, 170 
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which was approved by the ethics committee of the RWTH Aachen University Hospital, 171 

Aachen, Germany.  172 

2.2 Performance Measures 173 

2.2.1 Working Memory Span Tasks: Corsi Block Tapping  174 

Visuo-spatial WMC was assessed by the computerized version of the Corsi block-tapping task 175 

(forward and backward versions) from the Schuhfried Test System 176 

(https://www.schuhfried.com/test/CORSI; test forms S1 and S5). Here, participants were 177 

presented with a spatial array of nine irregularly arranged cubes on the monitor and 178 

observed a cursor that tapped a sequence of cubes. After an acoustic signal, participants 179 

were asked to re-tap the sequence either in the same (forward) or reverse (backward) order. 180 

Starting with three block taps, sequence length increased after three runs of a given length 181 

up to a maximum of 9 taps. The visuo-spatial WM span scores (forward and backward) 182 

correspond to the longest sequence correctly reproduced twice in a row. 183 

 184 

2.2.2 Complex Working Memory Span Tasks: Operation and Reading Span 185 

Complex verbal WMC was assessed by a shortened version of the “operation and reading 186 

span tasks” (Oswald et al., 2015). For each trial in the operation span task, participants were 187 

first presented with an arithmetic equation, then had to decide whether a presented answer 188 

is true or false. After each trial, a letter was presented to remember for later recall. After 3 189 

to 7 trials, a 4 × 3 letter matrix was presented, and participants were asked to recall the 190 

letter sequence by clicking on the letters in the correct order. The reading span task was 191 

similarly structured except for the distractor task presented between letters, which 192 

consisted of sentences (approximately 10–15 words) for which participants had to decide 193 

https://www.schuhfried.com/test/CORSI
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whether or not they made sense. In total, each of the five sequence lengths (3-7 trials) was 194 

presented once in a pseudo-randomized order per subtests. The verbal WM complex span 195 

was then calculated by the average number of letters recalled in the correct order across all 196 

trials of each subtest. 197 

2.2.3 Composite Working Memory Capacity Score 198 

As we aimed to assess global WMC, we aggregated all three test scores (Corsi forward and 199 

backward scores, complex span score) into a composite WMC score per subject by 200 

expressing individual performance per test as a fraction of the theoretically maximal score 201 

for this test and summing these values. The intercorrelations and age-controlled partial 202 

correlation between the single WMC subscores were calculated. Differences in WMC scores 203 

between young and old adults were assessed by the independent sample t-test, the 204 

relationship between WMC and age by a Pearson correlation analysis.  205 

 206 

2.3 fMRI Data Acquisition and Processing 207 

Whole-brain fMRI data were collected using a 3-T MR scanner (Tim-TRIO, Siemens Medical 208 

Systems) with a T2*-weighted echo-planar imaging (EPI) sequence (200 volumes; TR: 2200 209 

ms; TE: 30 ms; flip angle: 80°; voxel size: 3.1 x 3.1 x 3.1 mm
3
; 36 axial slices; inter-slice gap: 210 

0.47 mm). During fMRI data acquisition, participants were instructed to lie still, close their 211 

eyes, let their mind wander and not fall asleep (confirmed at debriefing). After discarding 212 

initial four EPI volumes to allow for field saturation, images were processed using SPM12 213 

(www.fil.ion.ucl.ac.uk/spm) involving EPI unwarping (using additionally acquired fieldmaps), 214 

two-pass affine realignment for motion correction, spatial normalization to the MNI-152 215 
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template brain provided by SPM12 using the “unified segmentation” approach (Ashburner & 216 

Friston, 2005), as well as spatial smoothing with a 5-mm FWHM Gaussian kernel.  217 

The above-mentioned five cognitive brain networks examined here comprised, to varying 218 

degrees, common and distinct brain regions. For instance, the WM, CogAC, VigAtt, and SM 219 

networks included peak coordinates in the inferior frontal gyrus, parietal regions, and 220 

midline structures. All but the SM and ToM networks included the anterior insula, while the 221 

SM and ToM networks were the only ones to include temporal regions and the mid-orbital 222 

gyrus. Moreover, only the SM network exhibited a strong left lateralization, presumably due 223 

to its involvement in language. In contrast, the ToM network uniquely included the right 224 

posterior temporo-parietal junction. Subcortical structures were only part of the WM, 225 

CogAC, and VigAtt networks (see Figure 1, Table SI for an overview and Table SII for detailed 226 

network coordinates and corresponding brain regions).  227 

RSFC within each of the meta-analytically defined networks was computed by first extracting 228 

the BOLD-signal time course of each node as the first eigenvariate of all voxels located within 229 

a 6-mm sphere around the meta-analytic peak voxel and conforming to the CanLab gray-230 

matter mask (https://canlabweb.colorado.edu). In order to reduce spurious correlations, 231 

variance explained by (i) the six movement parameters obtained during preprocessing, (ii) 232 

their derivatives (each modeled as first- and second-order effects), as well as (iii) the mean 233 

white-matter and cerebrospinal-fluid signal time courses were statistically removed from 234 

each node’s time series (Ciric et al., 2017; Satterthwaite et al., 2013), which has been shown 235 

to yield reliable estimates of within- and between-network connectivity (Varikuti et al., 236 

2016). Moreover, this approach ensures that less gray-matter-specific, motion-unrelated 237 

variance of BOLD-signal fluctuations of neural origin will be removed from the data (Chen et 238 

https://canlabweb.colorado.edu/
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al., 2012), as compared to global signal regression. Subsequently, time series were high-pass 239 

filtered retaining frequencies above 0.01 Hz.  240 

Although we regressed out motion-related variance such that afterwards the correlation 241 

between RSFC and motion was near zero, we conducted further analyses to follow up on this 242 

important issue, given that motion-related artifacts in resting-state fMRI data can lead to 243 

spurious functional connectivity. In particular, two additional RSFC denoising procedures 244 

were separately applied: First, global signal regression was performed (Ciric et al., 2017; 245 

Power et al., 2018; Satterthwaite et al., 2013). Second, data censoring was applied to 246 

remove data points in each time series that were contaminated by motion (using the 247 

method proposed by Afyouni & Nichols, 2018) and account for spuriously inflated RSFC of 248 

short-distance connections and spuriously decreased RSFC of long-distance ones (Ciric et al., 249 

2018). 250 

Pair-wise functional connectivity was computed as Fisher’s Z-transformed Pearson 251 

correlation between the first eigenvariate of the time series of each network’s nodes. 252 

Connectivity values were then adjusted (via linear regression) for effects of age, gender and 253 

movement based on the derivative of root mean squared variance over voxels (DVARS) 254 

within each age group to avoid predictions based on spurious between-subject differences 255 

(Duncan & Northoff, 2013; Power et al., 2012; Satterthwaite et al., 2013). Likewise, to 256 

deconfounding the connectivity values, the WMC scores were adjusted for the effects of age 257 

and gender within each age group. 258 

 259 

2.4 RVM Features and Prediction 260 
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RSFC values for all connections within a given network and subject represent individual 261 

features from which the individual WMC score were predicted using RVM (Tipping, 2001; 262 

Tipping & Faul, 2003) as implemented in the SparseBayes package (version 2.0 Matlab 263 

R2017b; http://www.relevancevector.com). To estimate the generalizability of the RVM 264 

models, a 10-fold cross-validation scheme was employed (see Figure 2 for a schematic 265 

analysis workflow). The available data (subjects) were randomly split into 10 equally sized 266 

subgroups. In each cross-validation fold, a RVM was trained on 9 of these and then used to 267 

predict the WMC score of the left-out split (i.e., the subjects not used during training). Input 268 

features (= all RSFC values of a given network) and target variables were scaled to zero mean 269 

and unit standard deviation based only on the training sample as to avoid any leakage. 270 

Deconfounding of input features and targets (as described above) was done once outside 271 

the cross-validation as recently proposed as the optimal strategy for prediction studies on 272 

individual phenotypes from RSFC (Pervaiz et al., 2020). To ensure the robustness of 273 

performance evaluation against the initial folds, the cross-validation procedure was 274 

repeated 250 times using independent splitting. These analyses were performed for each 275 

network separately in young (n = 50) and old (n = 45) adults to investigate age-related 276 

differences in predictive performance. To examine whether residual movement-related 277 

effects may be a relevant contributor to WMC predictability, additional analyses were 278 

conducted with including DVARS as a predictor in the models (see supplementary method 279 

section for details). 280 

Prediction accuracy (i.e., the ability of a given network’s RSFC pattern to predict individual 281 

WMC scores) was indicated by the mean Pearson’s correlation (𝑟̅) and mean absolute error 282 

(𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅) between the real and predicted WMC scores computed first within each of the 10-283 

folds and subsequently across all 250 cross-validation replications. To test whether 284 

http://www.relevancevector.com/
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performance was significantly different from zero, one-sample t-tests were performed on 285 

the 250 correlation coefficients, correcting for multiple comparisons over the assessed 286 

networks using Bonferroni’s method. In addition, we only considered those predictions 287 

relevant that were at least of a medium effect size (i.e. 𝑟̅ ≥ 0.24, corresponding to Cohen’s d 288 

≥ 0.5). When WMC predictability was significant in either the young or old group, group 289 

differences were calculated using independent sample t-tests (Bonferroni-corrected for the 290 

number of networks). To evaluate effect sizes of group differences, Fisher's Z-transformed 291 

mean correlation coefficients of the young and old groups were subtracted from each other. 292 

Subsequently, Cohen’s q served for effect size interpretation (Cohen, 1988).  293 

Moreover, to examine significant differences in prediction performance between 294 

significantly predictive networks within each group, pair-wise t-tests were performed based 295 

on the prediction accuracies obtained from the 250 cross-validation replications of the 296 

RVMs. Pair-wise t-tests were performed between networks that showed at least small 297 

Cohen’s q effect sizes between prediction performance with a substantial quantity of 298 

networks (significance threshold: p < 0.05, Bonferroni-corrected for the number of pair-wise 299 

network comparisons).  300 

To examine a potential performance dependence of WMC predictability from network-based 301 

RSFC in advanced age, the older sample was median-split into high- and low-WMC 302 

subgroups (post-hoc to the prediction analyses). The prediction accuracies (𝑟̅) were 303 

calculated within each subgroup, and significance tests were conducted as described above. 304 

Given the inherent sparsity of RVM prediction models, induced by forcing feature weights to 305 

be zero to indicate irrelevant network connections, the remaining non-zero (i.e., 306 

contributing) connections in each RVM model were inspected to determine which 307 

connections of a given network were predictive of individual WMC scores. Connections used 308 
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in at least 90% of the total 2500 predictive models for a given network are reported as the 309 

most frequently used and, therefore, most consistently predictive connections and are 310 

visualized with the BrainNet Viewer (Xia et al., 2013).  311 

 312 

 313 

 314 

3. RESULTS 315 

3.1 Working Memory Capacity  316 

WMC was significantly lower in the older sample compared to the young sample (t = 6.07, p 317 

< 0.001) and the variance did not differ (F = 0.69, p = 0.21; see Table 1 and Figure 3). This is 318 

corroborated by a significant negative correlation between WMC and age in the entire 319 

sample (r = −0.48; p < 0.001). The correlations between all three WMC subscores were 320 

significant in the entre sample with and without removing the effects of age. This suggests 321 

that age had very little influence on the relationship between single subscores (Table SIII). 322 

 323 

3.2 Working Memory Capacity Predictability from Network RSFC 324 

3.2.1 Young and Old Sample 325 

All cognitive networks significantly predicted WMC in the older group: WM: 𝑟̅old = 0.35; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ 326 

= 0.30; cognitive action control (CogAC): 𝑟̅old = 0.37; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.28; vigilant attention (VigAtt): 327 𝑟̅old = 0.33; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.33; theory-of-mind cognition (ToM): 𝑟̅old = 0.52; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.24; and 328 

semantic memory (SM): 𝑟̅old = 0.43; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.27. All four control networks significantly 329 

predicted WMC in the older group: extended social-affective demand (eSAD): 𝑟̅old = 0.45; 330 
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𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.27; finger tapping and prosaccade eye movements (Motor+PS): 𝑟̅old = 0.24; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 331 

0.34; finger tapping and somatosensory processing (Motor+SS): 𝑟̅old = 0.52; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.24; 332 

connectome-wide network (Connectome): 𝑟̅old = 0.42; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.27. The Figure 4 and Table 2 333 

provide an overview of the averaged prediction accuracies of the RVM results. The Figure 5 334 

summarizes the scatter plots of real and predicted WMC scores based on each network. 335 

Furthermore, Table SIV provides the detailed statistics on the WMC predictability from each 336 

network’s RSFC. When compared to all other seven predictive networks in the older group, 337 

the ToM network showed significantly better predictability (between-network comparison of 338 

prediction performance r at p < 0.001: WM: t = 21.39; CogAC: t = 19.53; VigAtt: t = 24.81; 339 

SM: t = 13.04; Motor+PS: t = 34.79; Connectome: t = 12.86). In contrast, only the 340 

predictability of the Motor+PS network combination was significantly lower (WM: t = -13.68; 341 

CogAC: t = -15.72; VigAtt: t = -10.69; ToM: t = -34.79; SM: t = -22.68; eSAD: t = -24.03; 342 

Motor+SS: t = -32.67; Connectome: t = -22.06), whereas the Motor+SS  combination 343 

exhibited significantly better predictability (WM: t = 21.41; CogAC: t = 18.79; VigAtt: t = 344 

22.59; SM: t = 11.52; Motor+PS: t = 32.67; Connectome: t = 12.76 [see Table SV]). 345 

In contrast, in the young group none of the networks was significantly predictive of WMC, 346 

only slight trends were observed for the WM: 𝑟̅young = 0.17 and 𝑟̅young = 0.16 for the SM, 347 

Motor+PS and Connectome networks. Using global signal regression (compared to white-348 

matter and cerebrospinal-fluid signal removal) resulted in an increase in the specificity of 349 

predictability across networks mainly linked to a decrease in prediction accuracy (see Table 350 

3). Although global signal regression has a particular impact on WMC predictability in the old 351 

group, for which potential motion-unrelated sources are discussed later, additional analyses 352 

controlling for movement-related artifacts in RSFC data did not corroborate that residual 353 

motion effects unduly influenced WMC predictability in the old group (see Table SVI for RVM 354 
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results based on data for which preprocessing included censoring as well as Table SVII for 355 

results of analyses that included DVARS as a predictor). Moreover, neither the predictiveness 356 

from intra- and inter-network connections nor from the entire connectome demonstrated 357 

substantial improvements over that of individual functional networks (see Table SVIII and 358 

Table 2). 359 

We observed significant age-related differences in WMC predictability for all networks with 360 

effect sizes ranging from small to large: Cohen’q: WM = 0.19; CogAC = 0.38; VigAtt = 0.40; 361 

ToM = 0.55; SM = 0.30; eSAD = 0.54; Motor+SS = 0.46 and Connectome = 0.29 (p < 0.001; see 362 

Table 2 and Table SIX).  363 

Moreover, the analyses of high- versus low-WMC participants of the older subsample 364 

revealed that overall predictability in the elderly might have been mainly driven by low WMC 365 

older adults for the majority of networks:  WM: 𝑟̅old_low = 0.37, 𝑟̅old_high = 0.22; CogAC: 𝑟̅old_low 366 

= 0.41, 𝑟̅old_high = 0.19; VigAtt: 𝑟̅old_low = 0.40, 𝑟̅old_high = 0.18; ToM: 𝑟̅old_low = 0.33, 𝑟̅old_high = 367 

0.30; SM: 𝑟̅old_low = 0.49, 𝑟̅old_high = 0.29; Motor+PS: 𝑟̅old_low = 0.28, 𝑟̅old_high = -0.02; Motor+SS: 368 𝑟̅old_low = 0.40, 𝑟̅old_high = 0.24 (see Table 4, Table SX for additional predictions based on intra- 369 

and inter-network connectivity, Tables SXI and SXII for statistics). 370 

 371 

3.2.2 Relevance of Single Connections  372 

As the RVM generates sparse solutions, we could identify specific connections within each of 373 

the cognitive networks that were frequently used by the prediction models (i.e., in at least 374 

90% of the 2500 [10 foldings × 250 repeats] models per network), hence representing 375 

consistent and potentially relevant contributions predicting WMC. In the older group, these 376 

frequently used connections were as follows (see Figure SI): for the WM network, the 377 
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connection between left inferior frontal gyrus and left thalamus and for the ToM network, 378 

the connection between right superior medial gyrus/frontal pole and left angular 379 

gyrus/temporo-parietal junction. None of the connection met our criteria for the CogAC, 380 

VigAtt and SM networks. For all the networks the percentage of how frequently connections 381 

were used are displayed in Figure 6. 382 

 383 

 384 

4. DISCUSSION 385 

We examined whether and to what degree individual RSFC patterns in any of eight meta-386 

analytically defined functional brain networks and a connectome-wide network predicted 387 

WMC in previously unseen young and old participants using ML-based regression analysis 388 

with the aim to investigate age-related differences (young vs. old adults). Our results 389 

demonstrate that individual WMC could be predicted from all five cognitive WM-related 390 

networks (𝑟̅ ≥ 0.33) with the highest accuracy of 𝑟̅ = 0.52 (ToM network), whereas from the 391 

WM-unrelated networks predictability varied with differential degree, the Motor+PS 392 

network showed the lowest significant predictability (𝑟̅ = 0.24) in the older group. In the 393 

young group none of the networks were predictive. WMC predictability across networks in 394 

the old group was primary linked to lower WMC.   395 

 396 

4.1 Age Differences in Working Memory Capacity Predictability  397 

In the old sample, individual WMC could be similarly high predicted from the RSFC pattern of 398 

the WM network and across networks closer related to WM i.e. cognitive action control 399 

(CogAC) and vigilant attention (VigAtt) and those broadly related to WM i.e. theory-of-mind 400 
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cognition (ToM) and semantic memory (SM). This demonstrates that the interregional 401 

coupling in a task-unconstrained state within robustly defined brain networks recruited 402 

during executive function and higher-order cognitive tasks contain information about 403 

individual WM performance. Moreover, WM-unrelated networks associated with task-404 

negative, social-affective and introspective processes (eSAD), finger tapping and prosaccade 405 

eye movements (Motor+PS) and finger tapping and somatosensory processing (Motor+SS) 406 

predicted WMC in advanced age. Thus, the strength of functional coupling (at rest) between 407 

these regions (defined by consistent activation during tasks) is associated with WM abilities 408 

tested outside the MRI scanner. The similarity to which WMC is predicted across different 409 

networks, related or unrelated to WM, is potentially linked to a decreased segregation of 410 

functional brain networks in advanced age (Chan et al., 2014, 2017), which in turn may be 411 

related to the often proposed neural-level dedifferentiation with aging (i.e., a declining 412 

specificity of neurofunctional systems; Goh, 2011; Grady, 2012; Sala-Llonch et al., 2015). The 413 

fact that networks become less segregated with age may lead to a situation where predictive 414 

information on individual WMC can be extracted from a broad range of networks. 415 

Alternatively, this “broadened” predictability of WMC may reflect widespread age-related 416 

changes that lead to similarly reduced network integrity within different networks (Varangis 417 

et al., 2019; Zonneveld et al., 2019), through which all the networks sampled here come to 418 

contain reasonably predictive information on performance. 419 

While all of the cognitive networks may be expected to relate to some degree to WM given 420 

some shared neural and behavioral variance between WM and other executive and cognitive 421 

processes, it should be noted that the predictive capacity for the CogAC and VigAtt networks 422 

was not primarily driven by their partial spatial overlap with regions of the WM network 423 

(Camilleri et al., 2017; Müller et al., 2015). That is, spatial similarity does not automatically 424 
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lead to a similar pattern of functional RSFC and performance associations (see Figure 6). The 425 

significant predictability of WMC in the old sample from the RSFC patterns of multiple 426 

networks (WM, CogAC, VigAtt, ToM, SM, eSAD, Motor+PS and Motor+SS) extends previous 427 

aging research that revealed age differences in univariate associations between WM 428 

performance and RSNs (Charroud et al., 2016; Jockwitz et al., 2017; Sala-Llonch, Arenaza-429 

Urquijo, et al., 2012).  430 

In addition, not finding any substantial improvement in predictiveness from intra- and inter-431 

network connectivity over individual networks suggests, firstly, that it is not the sheer 432 

(higher) number of features that determines prediction performance here, and secondly, 433 

that it is not the connectivity between the networks that provides higher information 434 

content with respect to WMC. In line with this, even the connectome-based prediction, 435 

which rests on an even higher number of connections, was not superior, suggesting that no 436 

additionally predictive information can be distilled from a functionally agnostic, though 437 

spatially comprehensive, brain-wide representation of RSFC, as compared to sparse but 438 

functionally meaningful brain networks. Alternatively, finding no substantial improvement in 439 

predictiveness might also be attributable to a worse feature-to-sample ratio. 440 

In turn, the general low predictability of WMC in young adults from the investigated 441 

networks (chosen based on theoretical considerations as detailed in the introduction) 442 

indicates that contrary to older adults, RSFC patterns within these networks does not hold 443 

information on individual WM performance in younger age. While this remains somewhat 444 

surprising, particularly for the WM network, it may be attributable to the differences in task 445 

demands between WM paradigms used in the scanner (and hence defining the meta-446 

analytic network) and the here employed WMC score (Kane, Conway, Miura, et al., 2007). 447 

This assumption would reinforce the notion of a higher specificity in brain–behaviour 448 
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relations in young adults, as compared to a less segregated and/or an altered integrity 449 

situation among the elderly, leading to a more global predictability of cognitive capacities 450 

from a broad range of brain networks (cf. Ward et al., 2015). Alternatively, this could also 451 

simply mean that young adults reconfigure their networks in task states more extensively to 452 

meet task-specific demands, and, therefore, RSFC patterns at rest are less predictive, 453 

whereas task and rest configurations are more similar to each other in advanced age. 454 

Ultimately, the overall low predictability, with only slight predictive trends for some 455 

networks, indicates a lack of shared variance between RSFC and WMC. Accordingly, young 456 

adults appear to not exhibit typical network-based RSFC patterns that correspond to 457 

certain WMC levels, at least in the functional networks investigated in relation to the 458 

composite WMC score used here. 459 

The better overall prediction in the older group might be related to factors of age-related 460 

neural decline that include brain atrophy and white-matter degeneration (Allen et al., 2005; 461 

Cabeza et al., 2016b; Cox et al., 2016), which may be related to altered network integrity 462 

and, hence, altered within-network processing efficiency. Together these may lead to brain 463 

organizational changes that strengthen the association between WMC and the integrity of 464 

brain networks as assessed by RSFC. This suggests that the composite WMC score contains 465 

information related to advanced age. Hence, the high predictability across networks in older 466 

adults may, in part, result from age-related neural reorganization that is associated with 467 

performance and includes RSFC changes across different networks (Sala-Llonch et al., 2015). 468 

These age-related changes in older adults were then picked up by the prediction models, 469 

leading to better prediction performance. Importantly, predictability across networks 470 

differed between low- and high-WMC older adults. Differential age-related neural plasticity 471 

may be related to low versus high WM abilities represented by reorganization mechanisms 472 
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linked to a decreased segregation of functional brain networks. Which seems associated 473 

with reduced functional specificity across networks and/or reduced network integrity within 474 

different networks and, on the other hand, compensation through reorganization. Each 475 

reorganizational process may manifest itself in altered patterns of within-network RSFC, 476 

which may drive associations between network RSFC patterns and WMC. The higher 477 

predictability across cognitive networks (closely and broadly linked to WM) and the task-478 

negative and motor-sensory networks (WM-unrelated) in older adults with lower WMC may 479 

be related to a stronger association such as a blurring of functionally distinct network 480 

systems almost exclusively linked with declined performance. This might represent 481 

reorganization mechanisms related to a decreased segregation of functional brain networks, 482 

e.g. a tighter link between cognitive, task-negative and motor-sensory systems, manifested 483 

in altered patterns of within-network RSFC, and may drive associations with lower WMC 484 

scores. Alternatively, the high predictability across networks might be linked to widespread 485 

age-related changes leading to a weakening of within-network connectivity associated with 486 

an increase in networks’ susceptibility to interference and, hence, performance 487 

deterioration (Stevens et al., 2008; Varangis et al., 2019; Zonneveld et al., 2019). These 488 

alterations may lead to similarly reduced network integrity within distinct networks, which 489 

are linked to low WMC. Either way or in combination, this suggests that especially very low 490 

performance levels in the old subsample are predictable from RSFC across networks possibly 491 

because the network changes are so pronounced that they cannot be compensated 492 

otherwise during WM-related task-demands. As a consequence, reduced WM functioning 493 

may result from this decreased network segregation and/or reduced network integrity due 494 

to a loss of effective neural communication. Such a decrease in functional specificity of 495 

multiple brain systems, has previously been shown to have a negative impact on WM 496 
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functioning (Chan et al., 2014, 2017; Goh, 2011). These assumptions are based on graph-497 

theoretical analyses of major RSNs demonstrating that aging is concomitant with a loss in 498 

distinctiveness of functionally specific networks (Geerligs et al., 2015) and decline in episodic 499 

memory performance (Chan et al., 2014). In response to detrimental neuro-functional 500 

changes with age such as less segregated networks, older adults may also show 501 

compensatory neural reorganization to maintain cognitive functioning, including altered 502 

RSFC patterns associated with increased neural efficiency in particular systems (Cabeza et 503 

al., 2018). Concretely, we found RSFC patterns associated with high WMC for the ToM 504 

network, rather broadly related to WM but linked to higher-order social cognition, and for a 505 

control network involved in motor and somatosensory processing (Motor+SS). The 506 

association between higher WMC and significant better predictiveness of the higher-order 507 

social-cognition network (compared to other cognitive networks) but significantly lower 508 

predictability from motor-sensory systems (Motor+PS: 𝑟̅old_high = -0.02,  Motor+SS: 𝑟̅old_high = 509 

0.31; compared to the higher predictability of motor-sensory networks in lower performers 510 

Motor+PS:  𝑟̅old_low = 0.28, Motor+PS:  𝑟̅old_low = 0.45) may be related to network 511 

configurations more responsive to neuroplastic adaptation to improve cognitive functions 512 

(Gallen et al., 2016; Iordan et al., 2018). Hence, network configurations in older adults with 513 

higher WMC may constitute a marker for compensatory re-configuration that may be 514 

relevant for (and thus predictive of) task performance, counteracting the neuro-functional 515 

deterioration of cognitive systems in advanced age. Alternatively, this may indicate the 516 

beginning of neural-level dedifferentiation with aging, at an as-yet less pronounced stage of 517 

decline than exhibited in old adults with low WMC. In turn, RSFC patterns associated with 518 

declined WMC may indicate a marker for less efficient network configurations during WM 519 

task performance (and possibly other cognitive paradigms which depend on WMC) 520 
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potentially due to less segregated network systems (Chan et al., 2014; Grady, 2012) and/or 521 

altered network integrity (Varangis et al., 2019; Zonneveld et al., 2019). 522 

Eventually, the pattern of our results suggests that normal aging is accompanied by some 523 

more global brain reorganization, broadly affecting brain systems linked to various 524 

functions including WMC (Pläschke et al., 2017). Accordingly, brain systems involved in 525 

executive functions and other “higher-order” cognitive functions, as well as perceptuo-526 

motor systems would be affected by this age-related reorganization, which seems to share 527 

some variance with normal age-related WMC decline. 528 

4.2 Contribution of Network Connections to Working Memory Capacity Predictability in 529 

Advanced Age 530 

In the older group, the most consistently informative connections (i.e., used > 90% 531 

throughout all prediction models) of the WM and ToM networks may, at least in part, 532 

account for inter-individual differences in WMC. In particular, the connection between the 533 

left Inferior frontal gyrus (p. opercularis) and the left thalamus of the WM network may 534 

plays a potential role in gating access to WM within the basal ganglia-thalamo-cortical loops 535 

(Bäckman et al., 2006; Nyberg & Eriksson, 2016; Schroll et al., 2012). Within the ToM 536 

network the most prominent connection is located between the right superior medial gyrus 537 

/ frontal pole (FP) and the left angular gyrus / temporo-parietal junction (AG/TPJ). The 538 

AG/TPJ has been associated with the retrieval of verbal material implicated in verbal WM, 539 

whereas, the FP has been associated with the planning and organization of future actions, 540 

hence both regions may subserve cognitive processes that overlap between ToM and WM. 541 

Therefore, the connection may represent a crucial interplay between retrieval of verbal 542 

information and the planning of task execution associated with WM tasks.  543 
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These findings of key connections seem to play a relevant role in the corresponding network 544 

at rest indicating that older adults with low WMC (potentially related to less segregated 545 

systems/deteriorated network integrity) might recruit these networks differently under task-546 

demands than do older adults with larger WMC (possibly linked to compensatory 547 

reorganizational adaptations; see Figure 3, Table 4 and Figure SI).  548 

 549 

4.3 Conceptual Considerations and Outlook 550 

Using ML in an out-of-sample prediction framework, we investigated the association 551 

between WMC and the multivariate intrinsic coupling pattern within functional brain 552 

networks and its modulation by age, which extends results of previous univariate 553 

approaches examining the relationship between cognitive decline and RSFC in advanced age 554 

(Andrews-Hanna et al., 2007; Sala-Llonch, Peña-Gómez, et al., 2012).  555 

We would like to highlight that our predictions are based on RSFC in meta-analytically 556 

defined functional networks, which offers the key advantage of being able to relate WMC to 557 

particular well-circumscribed functional systems, allowing for a specific interpretation of 558 

functionally distinct brain network–WMC associations revealed by ML-based predictions.  559 

Remarkably, our prediction performance of about r = 0.40 in the older group based on 560 

sparse single functional networks, as opposed to whole-connectome approaches, can 561 

compete with WM performance predictions from combined measures of structural and 562 

functional imaging (alpha span and digit backwards: r = 0.35) in a sample of 132 older adults 563 

(Y. Wang et al., 2013).  564 

Furthermore, our observed prediction performance is quite noteworthy given the relatively 565 

small sample size in the groups and the application of a robust, rather conservative approach 566 



26 

 

to testing model generalizability (viz., 250 repetitions of a 10-fold cross-validation scheme), 567 

than using the optimistic leave-one-out approach known to be prone to overfitting 568 

(Varoquaux et al., 2016). However, for the young sample we cannot neglect that the slight 569 

trend in predictability might be related to the moderate sample size. Besides, it needs to be 570 

acknowledged that the meta-analytical networks were derived from imaging studies 571 

primarily done in young and middle-aged adult samples. Therefore, it is likely that networks 572 

defined from studies in older samples would reveal age-specific differences in network 573 

topology. For instance, additional regions might turn out to be implicated in altered network 574 

configurations linked to reorganizational processes in advanced age and, hence, may result 575 

in differences in brain–behavior associations between young and older adults (Burianová et 576 

al., 2013). As such, the observed age-related prediction differences may also reflect 577 

topological differences in network architecture between age groups. Nevertheless, because 578 

the meta-analyses defining the networks comprised samples with varying mean age and age 579 

range, we would argue that they reflect the normative definition of the spatial network 580 

layout, even if this means a certain bias against the average network layout that may 581 

develop in advanced age.  582 

Despite proper state-of-the-art removal of variance related to cofounds (Ciric et al., 2017; 583 

Pervaiz et al., 2020; Power et al., 2012; Satterthwaite et al., 2013) as well as motion-related 584 

control analyses, we cannot entirely exclude that the alteration in WMC predictability when 585 

applying GSR may in part be related to residual motion-related effects. However, global 586 

signal may contain neural signal of interest that is unduly removed, which in turn may have 587 

contributed to reduced predictability. In line with this, recent evidence points to the need to 588 

be especially cautious with applying GSR when comparing groups with different noise 589 
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characteristics, as in young versus older adults, or with varying neural network structures 590 

(Murphy & Fox, 2017). 591 

Given that multiple functional networks were predictive of WMC and the connectome-wide 592 

network showed similar predictability, we cannot rule out that RSFC between regions 593 

distributed across the entire brain (i.e., outside our pre-defined networks) is a marker for 594 

WMC in advanced age. Support for this notion stems from data-driven whole-brain 595 

approaches demonstrating that RSFC between regions outside the well-known attention-596 

related network can be crucial to predict sustained-attention performance (Rosenberg et al., 597 

2016). This may similarly apply to WMC, particularly in older adults with low WMC. 598 

Moreover, we cannot exclude that factors of non-neural origin such as physiological changes 599 

linked to aging and their impact on the hemodynamic signals (D’Esposito et al., 2003; West 600 

et al., 2019) may have contributed to our findings. Hence, the relationship between RSFC 601 

and cognition in aging definitively demands further investigation with the aim of precise 602 

predictions on a single-subject level. One of the highlights is the use of the RVM, which 603 

offers the advantage of a better localization and interpretability of connections that mainly 604 

drove the predictions by providing considerably sparse solutions with superior 605 

generalizability (Tipping, 2001; Y. Wang et al., 2010). Therefore, a more detailed evaluation 606 

of the neural mechanisms driving the predictions can be achieved.  607 

Compared to previous studies addressing such age-related brain-behavior relationships in 608 

a data-driven way (Charroud et al., 2016; Wang et al., 2013), our approach offers the 609 

chance to improve our understanding of how and to what degree individual differences in 610 

particular cognitive functions (here: working memory) are represented and potentially 611 

implemented by particular features (here: RSFC) of a priori defined functional networks. 612 

Using meta-analytically derived functional networks in combination with performance 613 
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prediction, we can evaluate whether particular features of networks known to be involved 614 

in certain cognitive functions do in fact contribute to inter-individual behavioral variation 615 

in this function, and how this is affected by age. As we have shown, individual RSFC 616 

patterns do not always translate into individual performance levels (here: WMC), and the 617 

average level of predictability per group also seems to be related to the specificity of the 618 

predictability across networks: With both overall low predictability (in young adults) and 619 

overall rather high predictability (in older adults), specificity is low, which appears like 620 

floor and ceiling effects, respectively. 621 

Although our data and analyses do not reveal the specific mechanisms underlying the 622 

generally better WMC predictability in advanced age, the network-specific analyses 623 

allowed us to identify that normal aging is linked to a nonspecific (i.e., network-624 

independent) pattern of RSFC–performance relationships that spans across rather distinct 625 

networks. This would not have been possible with previous approaches based on the 626 

whole-brain connectome, which even in young samples often yielded patterns of RSFC 627 

among widely distributed and (seemingly) unrelated brain regions to be predictive of a 628 

given behavioral or cognitive feature (Finn et al., 2015; Rosenberg et al., 2016). Overall, 629 

the present study may answer as many questions as it raises new ones, but we hope that 630 

this will spur future research to unravel the neural mechanisms driving these predictions 631 

and their age-related differences. We argue that our approach of combining meta-632 

analytically defined functional networks with multivariate pattern-regression using a robust 633 

cross-validation scheme provided new insights into aging-related brain reorganization by 634 

linking WMC to brain network integrity.  635 

 636 

 637 
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4.4 Conclusion  638 

We investigated whether and to what degree the RSFC patterns of eight functional brain 639 

networks and a connectome-wide network predict individual WMC in young and old adults. 640 

By using ML-based regression modeling in a robust cross-validation scheme, age differences 641 

in predictability were examined. The comparison of prediction performance in young and old 642 

participants revealed differences in brain–behavior associations.  643 

While a general unpredictability of the networks’ connectivity patterns was observed in 644 

young adults, each network predicted WMC in old adults, suggesting neurobiological 645 

adaptation related to WM task demands predictable from resting-state interregional 646 

coupling. In advanced age, a similar degree of predictive power across diverse networks 647 

suggests different possibilities or combinations of neural-level reorganization such as a 648 

decreased segregation of functional networks, brain-wide alterations in network integrity 649 

and/or compensatory connectivity changes as common factors underlying inter-individual 650 

variation in WMC. Our results thus offer novel insights into age-related reorganization of 651 

functional brain networks linked to low- and high-WMC. Finally, our study underlines the 652 

value of RSFC as a marker for individual WMC in advanced age and potentially as a source for 653 

examining neural mechanisms linked to cognitive deterioration by using ML-based 654 

prediction.  655 

  656 
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Table 1: Sample characteristics 

Normal Aging 

Sample 

N 

(males) 

Age 

(years) 

Head 

Movement 

(DVARS)   

DemTect BDI-II WMC  

Young 50 (27) 26 ± 3 1.25 ± 0.25 - 6 ± 5 1.93 ± 0.24 

Old 45 (24) 62 ± 5 1.57 ± 0.41*
 

16 ± 2 5 ± 5 1.60 ± 0.29* 

      WMC Low 24 (9) 61 ± 5 1.51 ± 0.46 16 ± 2 6 ± 5 1.40 ± 0.26 

      WMC High 21 (15) 62 ± 6 1.63 ± 0.34 17 ± 2 4 ± 5 1. 82 ± 0.09* 

Note. All values (except n) represent mean ± standard deviation;  

DVARS, derivative of root mean squared variance over voxels (head movement parameter);  

DemTect, Mild Cognitive Impairment and Early Dementia Detection; BDI-II, Beck Depression 

Inventory II;  

WMC, working memory capacity score;  

* significantly different between groups at p < 0.05 

 

Table 2: Predictability of individual working memory capacity based on functional connectivity in 

nine brain networks 

 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome 𝑟̅young 0.17 0.01 -0.06 0.03 0.16 -0.05 0.16 0.12 0.16 𝑟̅old 0.35* 0.37* 0.33* 0.52* 0.43* 0.45* 0.24* 0.52* 0.42* 

Cohen’s q 0.19 0.38 0.40 0.55 0.30 0.54 0.08 0.46 0.29 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the 

young (𝑟̅young) and old (𝑟̅old) sample. Cohen’s q: effect size of age group differences in correlations 

(<.1: no effect; 0.1 - 0.3: small effect; 0.3 - 0.5: medium effect; >0.5: large effect). 

* significant (p < 0.001) predictions with at least medium effect size (𝑟̅ ≥ 0.24, corresponding to 

Cohen’s d ≥ 0.5).  

 

Table 3: Predictability of individual working memory capacity based on functional connectivity in 

night brain networks - global signal regression 

 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome 𝑟̅young 0.12 0 0.06 0.09 0.18 -0.19 0.11 0.16 0.20 𝑟̅old 0.40* 0.27* 0.26* 0.42* 0.33* 0.32* 0.39* 0.36* 0.43* 

Cohen’s q 0.30 0.28 0.21 0.36 0.16 0.52 0.30 0.22 0.26 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the 

young (𝑟̅young) and old (𝑟̅old) sample. * significant (p < 0.001) predictions with at least medium effect 

size (𝑟̅ ≥ 0.24, corresponding to Cohen’s d ≥ 0.5). 

 

 



 

Table 4: Predictability of individual working memory capacity based on functional connectivity in 

nine brain networks in low- and high-WMC older adults  

  

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome 𝑟̅old_low   

(n = 24) 

0.33* 0.34* 0.25* 0.37* 0.41* 0.42* 0.28* 0.45* 0.35* 𝑟̅old_high  

(n = 21) 

0.08 0.12 0.23 0.33* 0.21 0.18 -0.02 0.31* 0.26* 

Cohen’s q 0.26 0.23 0.02 0.05 0.22 0.27 0.31 0.16 0.10 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the old 

sample with low (𝑟̅old_low) and high (𝑟̅old_high) WMC. Cohen’s q: effect size of differences in correlations 

between networks in low and high WMC older adults (<.1: no effect; 0.1 - 0.3: small effect; 0.3 - 0.5: 

medium effect; >0.5: large effect). 

* significant (p < 0.001) predictions with at least medium effect size (𝑟̅ ≥ 0.24, corresponding to 
Cohen’s d ≥ 0.5).  

 

 



 

 

Figure 1: Nodes of meta-analytically defined networks 

 

 

 

Figure 2: Schematic exemplary analysis workflow: Working memory capacity (WMC) is predicted 

from resting-state functional connectivity in the WM network in the old sample.  𝑟̅ / 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅: mean Pearson correlation coefficient / mean absolute error between real and predicted 

scores across 250 cross-validation repeats. 

 



 

Figure 3: Working memory capacity (WMC) plotted against age for young (in blue) and old (in gray) 

participants. Mean WMC (horizontal line) ± standard deviation (bounded box) for the young sample 

was 1.93 ± 0.24 and for the old one: 1.60 ± 0.29.  

 

 

 
 

Figure 4: Bar plot of prediction accuracies expressed as mean (error bars: standard deviation) 

Pearson correlations (𝑟̅) between real and mean predicted working memory capacity (WMC) scores 

across 250 cross-validation repeats for the young (in blue) and old (in gray) sample.  

* significant (p < 0.001) predictions / group differences.  

WM, working memory; CogAC, cognitive action control; VigAtt, vigilant attention; ToM, theory-of-

mind cognition; SM, semantic memory; eSAD, extended social-affective default; Motor+PS, 

motor+prosaccades; Motor+SS, motor+somatosensory. 



 

 

 

 



 

 

 



 

 

 

 



Figure 5: Predictability of individual working memory capacity (WMC) based on functional 

connectivity patterns in nine brain networks. Scatter plots show real against mean predicted WMC 

scores across 250 cross-validation repeats (error bars: standard deviations) for young (denoted in 

blue) and old (denoted in gray) participants. For significant prediction accuracies (𝑟̅: Pearson 

correlations between real and predicted scores), a linear regression line and a gray bounded line 

indicating the mean absolute error (𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅) were added. 

 

 

 

 

Figure 6: Illustration of the frequency with which connections were used in each of the nine 

functional brain networks for predicting working memory capacity (WMC) in the old sample.  

Displayed are only nodes with a ‘’relevant’’ connectivity (edge) value attached to them. Color 

indicates the percentage of use across 2500 cross-validation repeats per network (ranges are 

indicated with the color bars). 

Augmented reality app support for this figure can be downloaded under https://osf.io/wru83/ or via 

For further information please see supplement.     
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