TY - JOUR
AU - Senbayram, Mehmet
AU - Well, Reinhard
AU - Shan, Jun
AU - Bol, Roland
AU - Burkart, Stefan
AU - Jones, David L.
AU - Wu, Di
TI - Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification
JO - Plant and soil
VL - 448
IS - 1-2
SN - 1573-5036
CY - Dordrecht [u.a.]
PB - Springer Science + Business Media B.V
M1 - FZJ-2020-04364
SP - 509 - 522
PY - 2020
AB - Background and aimsPlants can directly affect nitrogen (N) transformation processes at the micro-ecological scale when soil comes into contact with roots. Due to the methodological limitations in measuring direct N2 losses in plant-soil systems, however, the effect of rhizosphere processes on N2O production and reduction to N2 has rarely been quantified.MethodsFor the first time, we developed a robotic continuous flow plant-soil incubation system (using a He+O2 + CO2) combined with N2O 15N site preference approach to examine the effect of plant root activity (barley – Hordeum vulgare L.) on: i) soil-borne N2O and N2 emissions, ii) the specific contribution of different pathways to N2O fluxes in moist soils (85% water holding capacity) receiving different inorganic N forms.ResultsOur results showed that when a nitrate-based N fertiliser was applied, the presence of plants tripled both N2O and N2 losses during the growth period but did not alter the N2O/(N2O + N2) product ratio. The 15N site preference data indicated that bacterial denitrification was the dominant source contributing to the observed N2O fluxes in both nitrate and ammonium treated soils, whereas the presence of barley increased the contribution of fungal N2O in the nitrate treated soils. During the post-harvest period, N2O and N2 emissions significantly increased in the ammonium-fertilised treatment, being more pronounced in the soil with a senescing root system.ConclusionOverall, our study showed a significant interaction between rhizosphere processes and N forms on the magnitude, patterns, and sources of soil borne N2O and N2 emissions in moist agricultural soils.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000516246500001
DO - DOI:10.1007/s11104-020-04457-9
UR - https://juser.fz-juelich.de/record/887707
ER -