000887723 001__ 887723
000887723 005__ 20210130010630.0
000887723 0247_ $$2doi$$a10.1016/j.cortex.2020.02.024
000887723 0247_ $$2ISSN$$a0010-9452
000887723 0247_ $$2ISSN$$a1973-8102
000887723 0247_ $$2Handle$$a2128/26134
000887723 0247_ $$2altmetric$$aaltmetric:80675871
000887723 0247_ $$2pmid$$apmid:32571519
000887723 0247_ $$2WOS$$aWOS:000577507100017
000887723 037__ $$aFZJ-2020-04380
000887723 082__ $$a610
000887723 1001_ $$00000-0002-9732-6669$$aHenco, Lara$$b0$$eCorresponding author
000887723 245__ $$aBayesian modelling captures inter-individual differences in social belief computations in the putamen and insula
000887723 260__ $$aNew York, NY$$bElsevier$$c2020
000887723 3367_ $$2DRIVER$$aarticle
000887723 3367_ $$2DataCite$$aOutput Types/Journal article
000887723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605273975_16530
000887723 3367_ $$2BibTeX$$aARTICLE
000887723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887723 3367_ $$00$$2EndNote$$aJournal Article
000887723 520__ $$aComputational models of social learning and decision-making provide mechanistic tools toinvestigate the neural mechanisms that are involved in understanding other people. Whilemost studies employ explicit instructions to learn from social cues, everyday life is characterizedby the spontaneous use of such signals (e.g., the gaze of others) to infer on internalstates such as intentions. To investigate the neural mechanisms of the impact of gaze cues on learning and decision-making, we acquired behavioural and fMRI data from50 participants performing a probabilistic task, in which cards with varying winningprobabilities had to be chosen. In addition, the task included a computer-generated facethat gazed towards one of these cards providing implicit advice. Participants’ individualbelief trajectories were inferred using a hierarchical Gaussian filter (HGF) and used aspredictors in a linear model of neuronal activation. During learning, social prediction errorswere correlated with activity in inferior frontal gyrus and insula. During decision-making,the belief about the accuracy of the social cue was correlated with activity in inferiortemporal gyrus, putamen and pallidum while the putamen and insula showed activity as afunction of individual differences in weighting the social cue during decision-making. Ourfindings demonstrate that model-based fMRI can give insight into the behavioural andneural aspects of spontaneous social cue integration in learning and decision-making.They provide evidence for a mechanistic involvement of specific components of thebasal ganglia in subserving these processes.
000887723 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000887723 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000887723 588__ $$aDataset connected to CrossRef
000887723 7001_ $$0P:(DE-HGF)0$$aBrandi, Marie-Luise$$b1
000887723 7001_ $$0P:(DE-Juel1)179423$$aLahnakoski, Juha M.$$b2$$ufzj
000887723 7001_ $$0P:(DE-HGF)0$$aDiaconescu, Andreea O.$$b3
000887723 7001_ $$0P:(DE-HGF)0$$aMathys, Christoph$$b4
000887723 7001_ $$00000-0001-5547-8309$$aSchilbach, Leonhard$$b5
000887723 773__ $$0PERI:(DE-600)2080335-7$$a10.1016/j.cortex.2020.02.024$$gVol. 131, p. 221 - 236$$p221 - 236$$tCortex$$v131$$x0010-9452$$y2020
000887723 8564_ $$uhttps://juser.fz-juelich.de/record/887723/files/1-s2.0-S0010945220301453-main.pdf$$yOpenAccess
000887723 909CO $$ooai:juser.fz-juelich.de:887723$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179423$$aForschungszentrum Jülich$$b2$$kFZJ
000887723 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000887723 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000887723 9141_ $$y2020
000887723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-22
000887723 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCORTEX : 2018$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887723 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000887723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000887723 920__ $$lyes
000887723 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000887723 980__ $$ajournal
000887723 980__ $$aVDB
000887723 980__ $$aUNRESTRICTED
000887723 980__ $$aI:(DE-Juel1)INM-7-20090406
000887723 9801_ $$aFullTexts