001     887723
005     20210130010630.0
024 7 _ |a 10.1016/j.cortex.2020.02.024
|2 doi
024 7 _ |a 0010-9452
|2 ISSN
024 7 _ |a 1973-8102
|2 ISSN
024 7 _ |a 2128/26134
|2 Handle
024 7 _ |a altmetric:80675871
|2 altmetric
024 7 _ |a pmid:32571519
|2 pmid
024 7 _ |a WOS:000577507100017
|2 WOS
037 _ _ |a FZJ-2020-04380
082 _ _ |a 610
100 1 _ |a Henco, Lara
|0 0000-0002-9732-6669
|b 0
|e Corresponding author
245 _ _ |a Bayesian modelling captures inter-individual differences in social belief computations in the putamen and insula
260 _ _ |a New York, NY
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605273975_16530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Computational models of social learning and decision-making provide mechanistic tools toinvestigate the neural mechanisms that are involved in understanding other people. Whilemost studies employ explicit instructions to learn from social cues, everyday life is characterizedby the spontaneous use of such signals (e.g., the gaze of others) to infer on internalstates such as intentions. To investigate the neural mechanisms of the impact of gaze cues on learning and decision-making, we acquired behavioural and fMRI data from50 participants performing a probabilistic task, in which cards with varying winningprobabilities had to be chosen. In addition, the task included a computer-generated facethat gazed towards one of these cards providing implicit advice. Participants’ individualbelief trajectories were inferred using a hierarchical Gaussian filter (HGF) and used aspredictors in a linear model of neuronal activation. During learning, social prediction errorswere correlated with activity in inferior frontal gyrus and insula. During decision-making,the belief about the accuracy of the social cue was correlated with activity in inferiortemporal gyrus, putamen and pallidum while the putamen and insula showed activity as afunction of individual differences in weighting the social cue during decision-making. Ourfindings demonstrate that model-based fMRI can give insight into the behavioural andneural aspects of spontaneous social cue integration in learning and decision-making.They provide evidence for a mechanistic involvement of specific components of thebasal ganglia in subserving these processes.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brandi, Marie-Luise
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lahnakoski, Juha M.
|0 P:(DE-Juel1)179423
|b 2
|u fzj
700 1 _ |a Diaconescu, Andreea O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mathys, Christoph
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schilbach, Leonhard
|0 0000-0001-5547-8309
|b 5
773 _ _ |a 10.1016/j.cortex.2020.02.024
|g Vol. 131, p. 221 - 236
|0 PERI:(DE-600)2080335-7
|p 221 - 236
|t Cortex
|v 131
|y 2020
|x 0010-9452
856 4 _ |u https://juser.fz-juelich.de/record/887723/files/1-s2.0-S0010945220301453-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887723
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179423
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CORTEX : 2018
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21