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Computational models of social learning and decision-making provide mechanistic tools to

investigate the neural mechanisms that are involved in understanding other people. While

most studies employ explicit instructions to learn from social cues, everyday life is char-

acterized by the spontaneous use of such signals (e.g., the gaze of others) to infer on in-

ternal states such as intentions. To investigate the neural mechanisms of the impact of
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gaze cues on learning and decision-making, we acquired behavioural and fMRI data from

50 participants performing a probabilistic task, in which cards with varying winning

probabilities had to be chosen. In addition, the task included a computer-generated face

that gazed towards one of these cards providing implicit advice. Participants’ individual

belief trajectories were inferred using a hierarchical Gaussian filter (HGF) and used as

predictors in a linear model of neuronal activation. During learning, social prediction errors

were correlated with activity in inferior frontal gyrus and insula. During decision-making,

the belief about the accuracy of the social cue was correlated with activity in inferior

temporal gyrus, putamen and pallidum while the putamen and insula showed activity as a

function of individual differences in weighting the social cue during decision-making. Our

findings demonstrate that model-based fMRI can give insight into the behavioural and

neural aspects of spontaneous social cue integration in learning and decision-making.

They provide evidence for a mechanistic involvement of specific components of the

basal ganglia in subserving these processes.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Successful social interaction requires learning from others

and making decisions that in turn lead to rewarding experi-

ences. Although similar to reward learning in non-social

contexts, social learning is thought to engage different pro-

cesses by which not only reward associations are learned, but

also the hidden traits (Hackel, Doll, & Amodio, 2015) or states

(e.g., intentions) (Diaconescu et al., 2017) whichmaymodulate

these associations. Accordingly, social learning has been

found to engage brain regions that may have a unique role in

social cognition in addition to the neural circuitry involved in

non-social learning (Joiner, Piva, Turrin, & Chang, 2017;

Lockwood & Klein-Flügge, 2020; Ruff & Fehr, 2014;

Wittmann, Lockwood, & Rushworth, 2018).

Reinforcement learning studies have repeatedly found that

striatal activity is associated with non-social reward predic-

tion errors, i.e., the difference between actual and expected

reward (cf. Dayan & Daw, 2008; O’Doherty, Cockburn, & Pauli,

2017), but also reward prediction errors in various social

contexts (e.g., B�aez-Mendoza & Schultz, 2013; Burke, Tobler,

Baddeley, & Schultz, 2010; Hackel, Doll, & Amodio, 2015;

Lockwood, Apps, Valton, Viding, & Roiser, 2016; Lockwood &

Klein-Flügge, 2020). For instance, in trust games in which

participants are required to make risky investments with

other players, parts of the striatum including the caudate and

putamen show stronger activations in response to recipro-

cated cooperation (Delgado, Frank, & Phelps, 2005; Fareri,

Chang, & Delgado, 2012; King-Casas et al., 2005). Activity in

these regions is also associated with reward predictions about

others during trust decisions (Diaconescu et al., 2017; King-

Casas et al., 2005). Negative violations of social reward, such

as unreciprocated cooperation (Rilling, King-Casas, & Sanfey,

2008), misleading advice (Diaconescu et al., 2017) and social

exclusion (Eisenberger, Lieberman, & Williams, 2003) have

been associated with activity in the insula, which is also

involved in risk and error monitoring in non-social contexts

(cf. Iglesias, Mathys, Brodersen, Kasper, Piccirelli, denOuden,

et al., 2013).
In addition, some brain regions may be more strongly

involved in social learning than in non-social learning. For

instance, paradigms in which participants were asked to learn

about the trustworthiness of a partner through trial and error

(Behrens, Hunt, Woolrich, & Rushworth, 2008; Diaconescu

et al., 2017; King-Casas et al., 2005) have been used to show

that social prediction errors engage brain areas previously

associated with mentalization, such as the temporoparietal

junction (TPJ) and the dorsomedial prefrontal cortex (dmPFC).

Other studies highlighted the domain specificity of the ante-

rior cingulate gyrus (ACCg) when learning from others (Apps,

Lesage, & Ramnani, 2015; Apps, Rushworth, & Chang, 2016;

Lockwood, Apps, Roiser, & Viding, 2015).

The majority of studies, which investigated the neural

correlates of learning the trustworthiness of others, thereby

probing mentalization, instructed participants explicitly to

learn from a partner’s advice (Behrens et al., 2008; Diaconescu

et al., 2017). Most everyday life social interactions, however,

require us to automatically infer on mental states by using

nonverbal signals such as gaze behaviour (Schilbach et al.,

2013). Therefore, in the current study, we decided to investi-

gate the neural mechanisms of uninstructed social learning

and decision-making by means of functional magnetic reso-

nance imaging (fMRI).

To this end, we employed an established probabilistic

learning task (Sevgi, Diaconescu, Henco, Tittgemeyer, &

Schilbach, 2020) in which participants can learn from two

types of information, i.e., a non-social cue (cards with

different colours) and a social cue (gaze shift of a face pre-

sented in the centre of the screen), in order to maximize the

reward associated with a card draw (Fig. 1A). In this task,

participants were not explicitly instructed to pay attention to

the face in order to probe the spontaneous use of social in-

formation. Three types of computational models of learning

and decision-making were used to fit participants’ choices.

Thesemodels varied in their complexity of the belief updating

process and have been employed in previous studies of

learning under uncertainty (DeBerker et al., 2016; Iglesias,

Mathys, Brodersen, Kasper, Piccirelli, denOuden, et al., 2013).
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Furthermore, the modelling framework was constructed in

such a way that it allowed us to estimate the relative weight

participants were affording to their learned beliefs about the

social cue compared to the non-social cuewhen predicting the

outcome of the task. We also captured the usage of the social

cue by means of model-agnostic measures, i.e., subjective

post-experimental reports as well as gaze fixations during

decision-making by means of simultaneous eye-tracking.

The learning trajectories as well as the weighting factor

from the best performing model, the hierarchical Gaussian

filter (HGF; Mathys et al., 2014; Mathys, Daunizeau, Friston, &

Stephan, 2011), were used as predictors in model-based fMRI

analysis to uncover the neural mechanisms of social and non-

social learning and decision-making. We evaluated whether

social learning signals during uninstructed inference would

yield neural activations similar to those found in studies of

instructed inference (Behrens et al., 2008; Diaconescu et al.,

2017). This allowed us to evaluate whether inter-individual

variation in the propensity to use the social cue during

decision-making is reflected in differences of neural activity.

We expected the striatum to be involved in the representation

of social cue probabilities and were specifically interested in

investigating whether individual differences in weighting the

social over non-social information in the task were also rep-

resented in this part of the brain. We further evaluated the

estimated uncertainty for social and non-social cues during

decision-making. We predicted that the insula would code

both social and non-social uncertainty and asked whether

social uncertainty is additionally tracked by regions involved

in mentalization. Furthermore, we probed the neural corre-

lates of social and non-social prediction errors and predicted

to find overlapping activations in the anterior cingulate and

insula as well as activations associated with social learning in

brain regions involved in mentalizing, such as the TPJ and the

dmPFC (Behrens et al., 2008; Diaconescu et al., 2017).
2. Methods

2.1. Participants

A total of 55 healthy volunteers (28 female;mean age 25.2 ± 5.6

years, range: 18e48 years) participated in the study. These

participants were recruited through the Max Planck Institute

of Psychiatry as well as local universities. They were all right-

handed, had normal or corrected-to-normal vision and re-

ported no history of neurological or psychiatric disease.

Furthermore, they did not meet any contraindications for

magnetic resonance imaging (MRI) measurement, such as

metal implants or claustrophobia. All participants stated to be

non-smokers and none of them reported current intake of

psychoactive medication. All participants were naı̈ve to the

purpose of the experiment and provided informed consent to

take part in the study after a written/verbal explanation of the

study procedure. Participants received a reimbursement for

participation and an additional amount of money (1e6 Euro)

that depended on their score in the task. The studywas in line

with the Declaration of Helsinki and approval for the experi-

mental protocol was granted by the local ethics committee of

the Medical Faculty of the Ludwig-Maximilians-University of
Munich. Five measured participants were not included in the

analysis: two were excluded due to abnormalities in the

structural brain scans, one due to technical issues with the

task presentation on the scanner monitor, one participant did

not perform the task according to the instruction, and one

participant was excluded because an exclusion criterion

(nicotine abuse) applied, which was communicated subse-

quent to measurement. Accordingly, we analysed data from

50 participants (25 female; mean age 24.8 ± 5 years, range:

18e48 years).

2.2. Experimental paradigm and procedure

Participants completed a probabilistic learning task,

comprising a non-social and a social cue (Fig. 1A). The task,

initially introduced by (Sevgi et al., 2020), consisted of 120

trials and lasted approximately 20 min. Participants were

instructed to choose one of two cards (green or blue) on every

trial and were told that the winning probability of the colours

would change throughout the task. A computer-generated

face was presented at the centre of the screen during the

entire trial. At the trial start, the face looked down, then raised

its eyes to look directly at the participant, and then shifted its

gaze towards one of two cards presented on either side of it

(Fig. 1A). Independently of the winning probability of the card

colours, the probability of the face gazing towards thewinning

card, thus providing a social cue, was also systematically

manipulated. Participant choice was enabled two seconds

after the gaze shift of the face and lasted until a response was

made. Trials were not counted if the participant pressed a

button before the choicewas enabled or if they tookmore than

5 sec to respond after the choice was activated. In these cases,

the screen showed “response too early/late” and the outcome

of the choice was not displayed. The choice phase was fol-

lowed by a jittered delay (2e4 sec) before the outcome (correct/

wrong) was presented for 2 sec. During choice, both cards

were showing reward values (ranging from 1 to 9), which were

added to a cumulative score that was presented during the

feedback phase if the participant chose the correct card.When

the answer was wrong, the score remained the same. Partic-

ipants were told that the numbers were sampled randomly

and that they were not associated with the winning proba-

bilities of the cards. Participants were told that if they were

completely uncertain about the winning probabilities, they

might want to pick the card associated with a higher reward

value. The outcomewas signalled to the participant by a green

check mark (correct choice) or a red cross (incorrect choice).

All trials were separated by a jittered inter-trial interval

(3e6 sec) and 12 of these inter-trial intervals were jittered at

longer durations (12e15 sec), similar to including null trials.

Prior to the task, participants were informed that the card

winning probabilities would change during the task. Partici-

pants were not explicitly instructed to learn about the social

cue, but were merely told that the face in the centre of the

screen was included to make the task more interesting. The

probability schedule of the social cue was orthogonal to the

non-social cue as shown in Fig. 1B. During the first half of the

experiment, the winning probability of the blue card was

stable at 75% (trials 1e60), followed by a volatile period where

winning probability changed from 20% (trials 61e80; 101e120)

https://doi.org/10.1016/j.cortex.2020.02.024
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Fig. 1 e A: Trial flow and task design. On every trial, participants choose one of two cards (green & blue). After the choice is

logged, an hourglass is presented followed by a green tick or a red cross depending on whether the response was correct or

wrong. With every correct response, the score of the chosen card is added onto a cumulative score that participants were

instructed to maximize and which determined the additional amount (1e6 euro) paid to the participant at the end of the

experiment. B: Probability schedule of the social (blue) and non-social (red) cue. C: Two parallel learning systems that

describe participants’ learning about the probability and volatility of the social (blue) and non-social (red) cues. The circles

(blue and red) and the diamond (purple) represent states that change in time (i.e., trial t), whereas the squares denote

parameters estimated across time (see Methods 2.3).
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to 80% (trials 81e100). The gaze schedule started with a stable

phase with 75% accuracy (trials 1e40), followed by a volatile

period where gaze accuracy changed from 20% (trials 41e50;

61e70) and 80% (trials 51e60; 71e80). During trials 80e120 the

gaze accuracy had a probability of 12%. For 8 participants, who

were recruited during the pilot phase of the study, the volatile

phase of the social cue started 10 trials later. The paradigm

was presented by Presentation software (Presentation Version

16.3, Build 12.20.12, Neurobehavioural Systems Inc., Berkeley,

California, USA, www.neurobs.com) running on a Microsoft

WindowXP operating system and stimuli were presented on a

30-inch LCD OptoStimH-3/30Medres MRI compatible monitor

on a background of grey luminance with a resolution of

1024 � 768 and a refresh rate of 60 Hz. Participants responded

to Stimuli using two buttons on a response box (LSC-400B

controller, Lumina, Cedrus).

Prior to the MRI session, participants were asked to answer

a standard set of questionnaires used in the research group. It

included the autism quotient (AQ; Baron-Cohen, Wheelwright,

Skinner, Martin, & Clubley, 2001) emotional quotient (EQ;

Anticipatory and Consummatory Interpersonal Pleasure Scale

(ACIPS; Gooding & Pflum, 2014), Liebowitz Social Anxiety Scale

(LSAS; (Liebowitz, 1987), the Becks Depression Inventory (BDI-

II; Kühner, Bürger, Keller, & Hautzinger, 2006), the Social

Network Questionnaire (SNQ; Linden, Lischka, Popien, &

Golombek, 2007), the Toronto Alexythimia Scale (TAS; Bagby,

Taylor, & Parker, 1994) as well as the Reading the Mind in the
Eyes Test (RMET; Baron-Cohen, Wheelwright, Hill, Raste, &

Plumb, 2001). The psychometric data was analysed within

the scope of a different study. In addition, participants filled

out a post-experimental questionnaire to assess the subjective

learning experience during the task, asking how difficult the

task was (from 0 to 100), how much they used the gaze (from

0 to 100) and how much it helped them during the task (from

0 to 100). The results of the post-experimental questionnaire

can be seen in the appendix (Table A. 1).

2.3. Computational modelling

The modelling approach followed the “observing the

observer” framework in which two types of models (percep-

tual and response models) are paired in order to allow the

inference of an observer (i.e., the experimenter) on the infer-

ence of a participant: Perceptual models describe the partic-

ipant’s belief trajectories about the hidden causes (states) of

the sensory inputs (here: social and non-social cue); the

response models describe how these beliefs are translated

into decisions (Daunizeau et al., 2010).

2.3.1. Perceptual models
We used 3 perceptual models that had been employed in

previous studies (cf. Iglesias, Mathys, Brodersen, Kasper,

Piccirelli, denOuden, et al., 2013) and that varied with regard

to the complexity of the belief updating process. Perceptual

http://www.neurobs.com
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model 1 comprises two parallel hierarchical Gaussian filters

(HGF; Mathys et al., 2014; Mathys et al., 2011), which are in-

versions of generative models of the sensory inputs the

participant experiences, i.e., card and gaze outcomes (Fig. 2).

This approach assumes that participants are dynamically

updating their beliefs (i.e., posterior probability distributions)

in order to infer on the hidden environmental states x that

cause the experienced sensory inputs. In the generative

model, these “to-be-inferred-on” states are coupled in a three-

level hierarchy: The lowest level x1 gaze represents the accu-

racy of the gaze in a binary form (1 ¼ correct, 0 ¼ incorrect),

level x2 gaze represents the tendency of the gaze to be correct or

incorrect and level x3 gaze represents the volatility of this ten-

dency to be accurate. Correspondingly, the lowest level x1card
represents the accuracy of the blue card in a binary form

(1¼ correct, 0¼ incorrect), level x2 card represents the tendency

of the blue card to be correct or incorrect and level x3 card

represents the volatility of the tendency of the blue card to be

correct. The third state evolves as a first-order autoregressive

(AR(1)) process. The second state evolves as a Gaussian

random walk with a step size determined by the state at the

third level. The probability of x1is a sigmoid transformation of

x2.

pðx1 ¼1Þ¼ 1
1þ expð�x2Þ (1)

Given trial-wise responses of participants that indicated

whether they had followed the advice implicit in the gaze, this
Fig. 2 e Example of participant-specific learning trajectories for b

in terms of the non-social cue and B) prediction error d1gaze(blue

Variance (uncertainty) of prediction about non-social cue bs1card

posterior expectation of the blue card to be correct. The true tri

green correct ¼ 0) are shown in dark red dots and the response

shown in light red dots. F) The blue trajectory shows the poste

trial outcomes with respect to the gaze (correct ¼ 1; incorrect ¼
respect to the gaze (follow ¼ 1; not follow ¼ 0) are shown in lig
model was inverted in order to infer participant-specific pa-

rameters and belief trajectories (Mathys et al., 2014). This

resulted in belief trajectories at three hierarchical levels i ¼
1;2; 3. The beliefs m

ðkÞ
i about the state of the environment are

updated on every trial k via prediction errors dðkÞi�1 from the level

below weighted by a precision ratio (Equations 2-4) where the

beliefs’ precision p
ðkÞ
i on each level is equal to the inverse

variance of the belief p
ðkÞ
i ¼ 1=sðkÞ

i . Thus, the precision ratio

causes larger belief updates when the precision of the poste-

rior belief is low and the precision of the data is high.

Dm
ðkÞ
i f

bpðkÞ
i�1

p
ðkÞ
i

d
ðkÞ
i�1 (2)

Dm
ðkÞ
2 f

1

p
ðkÞ
2

d
ðkÞ
1 (3)

Dm
ðkÞ
3 f

bpðkÞ
2

p
ðkÞ
3

d
ðkÞ
2 (4)

The evolution of beliefs is governed by participant-specific

parameters: u2card and u2gazedetermine the participant-specific

evolution rate at the second level. As such, they describe how

fast contingencies of gaze and card stimuli with outcome

change in general, independent of phasic spikes and dips.

u3card and u3gazeplay the corresponding role at the third level,

representing the evolution rates of the volatilities of the
oth cues. A) Prediction error d1card (red) about trial outcome

) about the trial outcome in terms of the social cue. C)

and D) social cue bs1gaze:E) The red trajectory shows the

al outcomes with respect to the blue card (blue correct ¼ 1;

s with respect to the card (blue card ¼ 1; green card ¼ 0)

rior expectation of the social advice to be correct. The true

0) are shown in dark blue dots and the responses with

ht blue dots. Green dots marked missed trials.
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contingencies. Refer to table A2 in the appendix for configu-

rations of priors used in parameter estimation.

Perceptual model 2 is a parallel (gaze and card) version of

the Sutton K1 model which assumes a learning rate that

varies over time as a function of recent prediction errors

(Sutton, 1992). Perceptual model 3 is a parallel classical

reinforcement learning model which assumes a learning rate

that is fixed and participant-specific (Rescorla & Wagner,

1972).

2.3.2. Response models
In all response models, a combination of first level predictive

beliefs about gaze bmðtÞ
1;gazeand card bmðtÞ

1;cardcontingency with

outcome (called ‘accuracy’ in what follows), weighted by

precision was mapped onto decisions (Equation (5)). The

combined belief was modelled as the sum of the posterior

predictive expectation of gaze accuracy bmðtÞ
1;gaze and card accu-

racy bmðtÞ
1;card weighted by weights wðtÞ

gaze and wðtÞ
card (Equations (6)

and (7)), which are a function of the precisions of gaze and

card accuracy predictions, respectively. Since beliefs were

modelled in the gaze space (i.e., all cues and outcomes were

parameterizedwith respect to the card receiving the gaze), the

posterior predictive expectation of card bmðtÞ
1;card was translated

into gaze space, so that bmðtÞ
1;card ¼ bmðtÞ

1;card if the gaze went to the

blue card, but bmðtÞ
1;card ¼ 1� bmðtÞ

1;card if the gaze went to the green

card. The precisions bp1 (Equations (8) and (9)) were calculated

as the inverse variances of a Bernoulli distribution of the

posterior card and gaze estimates at the first level of the hi-

erarchy. This entails that precision increases when bmðtÞ
1 moves

away from .5. The constant parameter z> 0 is a weight on the

precision of gaze accuracy representing the relative sensitivity

of a participant to the social input compared to the non-social
Fig. 3 e Simulation for an agent with same perceptual paramete

different probability trajectories for taking the advice (p (y ¼ 1 | b

lowest values (log(-5) coded in light colours) and B) different pro

varying z values (highest values (log(5) coded in blue, lowest va

gaze (1¼ correct; 0¼ incorrect) is shown in blue in A) and the inp

in green in B).
input. Simulations reported in Fig. 3 illustrate the implications

of high and low z values for decision-making.

bðtÞ ¼wðtÞ
gazebmðtÞ

1;gaze þwðtÞ
cardbmðtÞ

1;card (5)

wðtÞ
gaze ¼

zbpðtÞ
1;gaze

zbpðtÞ
1;gaze þ bpðtÞ

1;card

(6)

wðtÞ
card ¼

bpðtÞ
1;card

zbpðtÞ
1;gaze þ bpðtÞ

1;card

(7)

bpðtÞ
1;gaze ¼

1

bmðtÞ
1;gaze

�
1� bmðtÞ

1;gaze

� (8)

bpðtÞ
1;card ¼

1

bmðtÞ
1;card

�
1� bmðtÞ

1;card

� (9)

We coded participants’ responses y in terms of congruency

with the ‘advice’, that is, whether participants chose the card

that was indicated by the gaze shift (1) or not (0). In the

responsemodel, the probability of following the advice ProbðtÞ
gaze

was modelled as a logistic sigmoid (softmax) function of

combined belief bðtÞ (Equation (5)), weighted by the expected

reward of the card when following the advice rgazeor not rnotgaze
(Equation (10)).

probgaze ¼pðyðtÞ ¼ 1Þ
¼1

.�
1þ exp

�
� gðtÞ

�
rðtÞgazeb

ðtÞ � rðtÞnotgaze
�
1�bðtÞ���� (10)

The extent to which a participant’s beliefs map onto ac-

tions is dependent on inverse decision temperature gðtÞ. A

larger gðtÞimplies a more deterministic relationship between

actions and belief whereas a smaller gðtÞ is indicative of a
rs but different social cue weighting. The plot shows A) the

) with varying z values (highest values (log(5) coded in blue,

bability trajectories for taking the blue card (p(y ¼ 1 |b) with

lues (log(-5) coded in light colours). The actual input of the

ut of the card on a given trial (1¼ blue; 0¼ green) is shown

https://doi.org/10.1016/j.cortex.2020.02.024
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weaker relationship andmore erratic or stochastic behaviour.

We implemented four different versions of gðtÞ to test different

hypotheses (mechanisms) of belief-to-response mapping. We

inverted models in which gðtÞ was either (1) a combination of

the log-volatility of the third level for both gaze and card

combined with constant participant-specific decision noise b

(Equation (11)), (2) a combination of the log-volatility of the

third level for gaze and participant-specific decision noise

(Equation (12)), (3) a combination of the log-volatility of the

third level for card and participant-specific decision noise

(Equation (13)) or (4) the participant-specific decision noise

alone (Equation (14)).

1
�
gðtÞ ¼bexp

�
� bmðtÞ

3;card � bmðtÞ
3;gaze

�
(11)

2Þ gðtÞ ¼bexp
�
� bmðtÞ

3;gaze

�
(12)

3
�
gðtÞ ¼bexp

�
� bmðtÞ

3;card

�
(13)

4Þ gðtÞ ¼b (14)

2.3.3. Combination of perceptual and response models
Overall, we used six different models to model learning and

decision-making: the HGF was combined with all four

responsemodels. Due to the lack of a third level, the Sutton K1

and Rescorla Wagner models were only combined with the

response model 4 in which decision noise was a participant-

specific decision noise parameter (Equation (14)). We used

the HGF toolbox version 4.1, which is part of the software

package TAPAS (https://translationalneuromodeling.github.

io/tapas). A quasi-Newton optimization algorithm was

employed for estimation.

2.4. Model selection

For model comparison we used the log model evidence (LME),

which is calculated in the HGF Toolbox during estimation and

represents a trade-off between model complexity and model

fit. The LME values for each of the 6 model configurations for

each participant were subjected to random-effects Bayesian

Model Selection (spm_BMS in SPM12; www.fil.ion.ucl.uk/spm)

to find the expected posterior probabilities (EXP_P), i.e., the

probability for each model of it having generated the re-

sponses for a randomly chosen participant out of all models in

the model space. We also report the exceedance probability

(XP) and protected exceedance probability (PXP), i.e., the

probability that a given model better explains the data than

any other model in the comparison space (Rigoux, Stephan,

Friston, & Daunizeau, 2014; Stephan, Penny, Daunizeau,

Moran, & Friston, 2009).

2.5. Behavioural analysis

As a proof-of-concept analysis for our computational

parameter z (i.e., the weighting of gaze input), we correlated
this parameter with subjective reports given in a post-

experimental questionnaire, asking participants how much

they used the gaze (on a scale from 0 to 100) and howmuch it

had helped them during the task (on a scale from 0 to 100).

Also, we tested the association with the parameter z and the

percentage of trials in which a participant chose the card that

had been indicated by the gaze. In addition, advice taking

behaviour (card chosen indicated by gaze) was subjected to a

repeated measures ANOVA with Task Phase as within-

subject factor (gaze accuracy high vs gaze accuracy volatile

vs gaze accuracy low) and z as covariate. Statistical tests were

performed using JASP (Version .9; https://jasp-stats.org/) and

Matlab (Version 2018a; www.mathworks.com).
2.6. fMRI acquisition and preprocessing

fMRI data were acquired with a 3-T MR imaging system

(MR750, GE, Milwaukee, USA) using a 32-channel head coil.

Anatomical screening was performed acquiring T1-weighted

3D inversion recovery fast spoiled gradient-echo scans with

a voxel size of 1 � 1 � 1 mm. Whole brain functional images

were acquired (AC-PC-orientation, interleaved bottom-up,

slice number ¼ 40, inter-slice gap ¼ .5 mm, TE ¼ 20 msec,

TR ¼ 2000 msec, flip angle ¼ 90�, voxel size ¼ 3 � 3 � 3 mm,

FOV 24 � 24 cm, matrix 96 � 96, resulting in-plane resolution

4 � 4 mm). Each run lasted approximately 30 min, resulting in

around 900 volumes.

Preprocessing of fMRI data was performed using MATLAB

and SPM12 (Statistical Parametric Mapping Software, www.fil.

ion.ucl.ac.uk/spm). Slice time correction was applied to ac-

count for the order of initially acquired interleaved slices.

Using rigid body transformation, images were then spatially

realigned to the volume mean and 6 motion regressors were

obtained, which were later used as nuisance regressors in the

GLM. The participant’s structural scan was then co-registered

to the volume mean. The co-registered structural image was

segmented and parameters obtained by this process were

applied for normalising functional and structural images to

the Montreal Neurological Institute (MNI) standard template

with a voxel resolution of 2 � 2 � 2 mm for functional images

and 1� 1� 1mm for structural images. In addition, to account

for respiratory, cardiac, or vascular activity, a CompCor

analysis was performed using the PhysIOtoolbox (Kasper

et al., 2017; https://translationalneuromodeling.github.io/

tapas). Using this method, time courses of voxels within WM

and CSF (masks obtained from segmentation) were extracted

from the smoothed images and subjected to a principal

components analysis. The first three principal components of

both WM and CSF entered the GLM as nuisance regressors as

well as six movement parameters generated by the realign-

ment step. For each nuisance regressor, we also included the

absolute first order derivate. Due to losing the structural scan

of one subject when transferring data (after preprocessing),

the GLM of one participant only contained the twelve motion

nuisance regressors,without the principal components ofWM

and CSF.

https://translationalneuromodeling.github.io/tapas
https://translationalneuromodeling.github.io/tapas
http://www.fil.ion.ucl.uk/spm
https://jasp-stats.org/
http://www.mathworks.com
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://translationalneuromodeling.github.io/tapas
https://translationalneuromodeling.github.io/tapas
https://doi.org/10.1016/j.cortex.2020.02.024
https://doi.org/10.1016/j.cortex.2020.02.024
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2.7. fMRI analysis

2.7.1. First-level
In our neuroimaging analysis we investigated the neural cor-

relates of the following computational trajectories: The belief

about the probability of the gaze to give correct advice (bmðtÞ
1;gaze),

the variance (i.e., uncertainty) of this belief (bsðtÞ
1;gaze), and the

variance about the probability of the winning card colour

(bsðtÞ
1;card). We did not use bmðtÞ

1;card in the analysis since we didn’t

expect neural activity with regard to the winning probability

of the blue or green card (the coding of blue ¼ 1 and green ¼ 0

was arbitrary). In addition, we investigated the neural corre-

lates of the social prediction error signal dðtÞ1gaze and the non-

social prediction error signal dðtÞ1card (an example of these tra-

jectories can be seen in Fig. 2).

In order to investigate whether neural activity change was

associated with these parameters, we defined voxel-wise

general linear models (GLMs) on the first level of analysis. In

the main GLM analysis the choice phase was modelled start-

ing from the time point of the gaze shift until the response of

the participant. The choice phase was parametrically modu-

lated with the participant-specific belief trajectories bmðtÞ
1;gaze.

The outcome phase of the task (modelled for 2 sec starting at

outcome presentation) was parametrically modulated by four

regressors: The first regressor contained d
ðtÞ
1gaze neutralised,

where the choicewaswrong by setting the regressor’s value to

zero. In the second regressor, dðtÞ1gaze was set to zero where the

choice was correct. This way we could evaluate d
ðtÞ
1gaze for

wrong, correct, and all choices. This was important since the

surprise about the social cue has a different relevance

depending on whether the participant’s choice was correct or

wrong. Therefore, misleading advice that preceded a correct

choice might be differently valenced than misleading advice

that preceded a wrong choice. According to the same ratio-

nale, the third and fourth regressors contained
��dðtÞ1card��

neutralized where the gaze was correct and where it was

incorrect, respectively. The absolute value of prediction error

was chosen because it was an arbitrary choice whether to

code blue outcomes as 1 and green ones as 0 or the other way

around. In this analysis, we also examined the prediction

error signal for all trials, irrespective of social cue accuracy

and separately for trials in which the social cue was correct or

wrong. Due to a correlation between bmðtÞ
1;gaze and bsðtÞ

1;gaze, we

estimated bsðtÞ
1;gaze and bsðtÞ

1;card in a separate GLM, which was the

same as the one described above but differed in that the

choice phase was modulated by bsðtÞ
1;gaze and bsðtÞ

1;card and not by

bmðtÞ
1;gaze. For completeness, we also estimated a GLM that

included all parametric regressors (bmðtÞ
1;gaze, bsðtÞ

1;gaze and bsðtÞ
1;cardÞ as

modulators of the choice phase (cf. appendix).

To investigate the neural correlates of fixations (see

Methods, section 2.8 for acquisition and analysis) on the face

during choice, we defined another GLM, in which the choice

regressor was parametrically modulated by the fixation pro-

portions on the face area. This GLM was estimated for 44
participants, as some participants had to be discarded due to

insufficient quality of the eye tracking data (i.e., blurred

corneal reflection).

In all GLMs, we modelled missed responses with separate

regressors and all regressors were convolved with a canonical

hemodynamic function. In addition, all parametric regressors

were z-scored and not orthogonalized.

2.7.2. Second-level
Contrast images for each parametric modulator were esti-

mated at the first level against baseline. These contrast im-

ages were entered into a second level one-sample t-test for

group level inference and we examined positive and negative

effects of the contrasts. We also compared positive ðdðtÞ1gaze >0,

i.e., gaze helpful) and negative social prediction errors

(dðtÞ1gaze <0, i.e., gaze misleading) directly, by entering subject-

wise pairs of positive and negative contrast images of the

parametric modulator containing the prediction error signal

d
ðtÞ
1gaze into a paired t-test. We also directly compared negative

social prediction errors during incorrect outcomes (i.e.,

participant followed misleading gaze) with negative social

prediction errors during correct outcomes (i.e., participant

didn’t follow misleading gaze) as well as positive social pre-

diction errors during correct outcomes (i.e., participant fol-

lowed helpful gaze) with positive social prediction errors

during incorrect outcomes (i.e., participant didn’t follow

helpful gaze).

To examine individual differences in brain areas associ-

ated with bmðtÞ
1;gaze, we included the social weighting factor

zestimated from the winning computational model as a

variable of interest in the respective t-tests. As a non-

computational equivalent, we used the subjective report of

the post-experimental questionnaires (Tab. A1), stating the

extent to which participants used the gaze during the task.

In this analysis, we included 48 participants since the data

of two participants was missing (Tab. A1). Since zand the

post-experimental questionnaire were correlated (Fig. 2a),

these two were entered separately in the second level

analysis. To examine individual differences in brain regions

correlated with -bsðtÞ
1;card as a function of weighting the non-

social cue, we used �z for the computational covariate and

�Question3 for the questionnaire covariate. Clusters were

formed at uncorrected p ¼ .001, followed by a cluster-level

correction for multiple testing, with significance defined as

cluster-level p-values < .05 after correction for family-wise

error rate (FWE).

2.8. Eyetracking data acquisition and analysis

Eye movement data was acquired employing an infrared

pupil-corneal reflection-based eye-tracking system (Eyelink

1000 Plus, SR Research, Osgoode, ON, Canada), which was

connected to an MR compatible fibre-optic camera head. The

camera head consisted of a 75 mm lens and an MR-

compatible LED Illuminator. A first-surface reflecting mirror

was attached to the scanner head coil to reflect participants’

eye movements. The distance between mirror and eye-

tracker was 125 cm and the distance between eyes and

https://doi.org/10.1016/j.cortex.2020.02.024
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monitor was 240 cm. We used a nine-point calibration to map

the gaze position onto screen coordinates and we acquired

data using a sampling rate of 2000 Hz. Preprocessing of eye

tracking data was performed using Matlab (Version 2017a;

www.mathworks.com). We segmented fixations during the

choice phase starting from the point of the advice until the

response of the participant. We also calculated mean fixation

points during the inter-trial interval (ITI). Due to the long

operating distance between eyes and monitor in the scanner,

we observed a shift in fixation data, which was different for

all participants. We calculated a shift distance in the x and y

coordinates for each participant by subtracting the mean

measured fixation points during the ITI’s from the co-

ordinates of the fixation cross that was presented during the

ITI. This shift value for both coordinates was then applied to

the segmented fixation points of the decision and outcome

phase.

In order to investigate the relationship between z and the

gaze data further, we used a general linear model approach

similar to the one employed in the fMRI analyses: We created

participant-specific fixation heatmaps for each trial

(768 � 1024 � 120) for the choice phase as well as for the

outcome phase. When generating the heatmaps, we

smoothed the fixation maps using a Gaussian kernel with mu

of fixation’s Cartesian coordinate and SD of 1� corresponding
to a full-width-at-half-maximum of approximately 2.35�

(Lahnakoski et al., 2014). We further defined pixel-wise GLMs

to analyse those regions of the screen where the number of

fixations correlate with the social weighting factor z.

Furthermore, in order to incorporate fixation data into our

GLM model, we calculated the proportion of face fixations

during the decision phase. For this, we counted fixation points

falling onto the region of the screen where the face was pre-

sented and fixation points falling on all remaining parts of the

screen. We then divided the number of fixations points from

the rest of the screen by the number of fixation points falling

on the face. In all eye-tracking analyses, 6 participants had to

be discarded from further analysis due to blurred corneal

reflection signals.
3. Results

3.1. Bayesian model comparison & selection

Random effects BMS revealed a clear superiority for the three-

level HGF in combination with a response model in which

decision noise is a combination of the log-volatility for both

gaze and card combined with participant-specific log-vola-

tility for card bm3;card and participant-specific decision noise b

(XP ¼ .937; PXP ¼ .627; EXP_P ¼ .464; Table 1). Therefore, we
Table 1 e Bayesian model selection results. Posterior model pro
(PXP).

Model 1 Model 2 Model

EXP_R .464 .098 .077

PXP .627 .067 .067

XP .937 0 0
used this model for all subsequent analyses. Mean parameter

estimates can be seen in the appendix (Tab A. 3).

3.2. Simulations

While keeping the perceptual model parameters fixed at the

prior values, we simulated inferred choice probabilities (in

gaze space (Equation (10)) and in card space) of agents with

variable z values to investigate how this parameter will affect

choice probabilities with regard to the social information

(Fig. 3A) and the non-social information (Fig. 3B) respectively.

The simulations show that z represents a relative sensitivity

parameter for the social input over the non-social input such

that high z values mean that the integrated belief is charac-

terized by an increased sensitivity of the social information

(gaze correct vs gaze wrong) and at the same time a decreased

sensitivity, i.e., increased stochasticity, with regard to the

non-social information (blue card vs green card correct).

3.3. Behavioural statistics: advice-taking & fixation
behaviour

We found that the social weighting factor z was significantly

correlated with subjective reports of having used the gaze

during the task [rs(48)¼ .453, p¼ .001] and the subjective report

of finding the gaze helpful [rs(48) ¼ .292, p ¼ .044] (Fig. 4A and

B). The social weighting factor zwas positively correlatedwith

the proportion of trials in which the gaze was followed [rs
(48) ¼ .487, p < .001] (Fig. 4C). The same was the case for the

subjective report of using the gaze [rs (48) ¼ .449, p ¼ .001].

Furthermore, when looking at advice-taking behaviour, the

repeated measures ANOVA revealed a main effect of task

phase [F(2,96) ¼ 57.050, p < .001, h2 ¼ .543] showing that par-

ticipants’ advice-taking behaviour varied with the probability

by which the gaze was giving a helpful advice. Post-hoc t-tests

showed that participants followed the advice significantly

more often in the high-accuracy phase (80%) compared to the

volatile phase [t(50) ¼ 7.357, p < .001, d ¼ 1.04]. During the low-

accuracy phase (20%) participants chose the advice signifi-

cantly less compared to the volatile [t(50) ¼ 2.911, p ¼ .016,

d ¼ .41] and compared to the high accuracy phase

[t(50)¼ 8.340, p< .001, d¼ 1.179]. Therewas amain effect of the

covariate z [F(1,48)¼ 17.54, p < .001, h2 ¼ .268] and a significant

interaction between the covariate z and the magnitude of the

effect of task phase on behaviour [F(2,96) ¼ 6.832, p ¼ .002,

h2 ¼ .125] indicating that participants with a higher z are more

sensitive to the social cue probability. Furthermore, the GLM

analysis of the fixation data revealed that fixation points

falling on the face area of the social stimulus (p < .001, un-

corrected) during choice phase were significantly correlated

with z (Fig. 4D).
babilities (EXP_R) and protected exceedance probabilities

3 Model 4 Model 4 Model 6

.031 .289 .042

.067 .105 .067

0 .063 0

http://www.mathworks.com
https://doi.org/10.1016/j.cortex.2020.02.024
https://doi.org/10.1016/j.cortex.2020.02.024


Fig. 4 e A) Association between estimated values of computational parameter z and subjective reports of having used the

gaze and B) finding it helpful during decision-making. C) Association between z and % of trials where gaze was followed. D)

Mean proportion of fixations on face area during all trials and z; Pixel-wise analysis of smoothed fixation data revealed that

z is correlated with the time people spend looking at the face (p < .001, uncorrected) during the choice phase of the trials.
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3.4. fMRI results

3.4.1. Social and non-social prediction and precision during
decision-making
During the choice phase of the task, the subjective predicted

advice accuracy bmðtÞ
1;gaze correlated with activity in the right and

left inferior temporal gyri, left and right inferior parietal

lobule, left and right precentral gyri, right postcentral gyrus,

left and right superior frontal gyrus, left and right fusiform

gyri, and the right putamen, superior orbital gyrus and pal-

lidum (Fig. 5 and Table 2). Self-reports of having used the gaze

during decision-making were associated with higher activity

related to bmðtÞ
1;gazein the right rectal gyrus, right and left puta-

men and insula (Fig. 6 and Table 3) across participants. Dif-

ferences in activation strength as a function of z were

associated with activity in the right inferior occipital gyrus

(Table A4). Significant clusters were neither found for the

correlation with 1� bmðtÞ
1;gaze (the subjective predicted probabil-

ity of a misleading gaze) nor for the variance of the prediction

bsðtÞ
1;gaze and 1� bsðtÞ

1;gaze. Results for bmðtÞ
1;gaze when estimated

together with bsðtÞ
1;gaze and bsðtÞ

1;card in one GLM can be seen in Table

A5 & A6.

In the choice phase of the task, the negative contrast on

the variance of the belief about the winning card colour (1-

bsðtÞ
1;card) correlated with the right insula and right rolandic
Fig. 5 e fMRI results for predicted accuracy of advice (bmðtÞ
1;gaze) duri

p < .001, cluster-level threshold p < .05, FWE corrected. [x y z] c

slices. See Table 2 for further information on cluster extents an
operculum (Fig. 7 and Table 4). Neither the�z (computational

non-social weight) nor e Question3 (subjective non-social

weight), were correlated with brain activity related to1-

bsðtÞ
1;card. No significant clusters were found for the positive

contrast ðbsðtÞ
1;cardÞ.
3.4.2. Social and non-social prediction error during outcome

For negative social prediction errors (dðtÞ1gaze <0, i.e., gaze

misleading) during wrong choice outcomes, we observed sig-

nificant activations in the right inferior frontal gyrus, right

insula, rolandic operculum and left posterior medial frontal

gyrus (Fig. 8 and Table 5). No significant activations were

found for negative social prediction errors during correct

choice outcomes or when evaluating both correct and wrong

choices. The analyses looking at the positive prediction error

signals (dðtÞ1gaze >0, i.e., gaze helpful) revealed significant acti-

vations in the right lingual gyrus and middle occipital gyrus,

but only in correct choice outcomes (Table 6).

When we directly compared negative prediction errors

during incorrect outcomes against negative prediction errors

during correct outcomes we found the same activation in the

right insula, rolandic operculum and left posterior medial

frontal gyrus as when evaluating negative social prediction

errors against baseline during incorrect outcomes. When we

directly compared positive prediction error signals during
ng the choice phase of the task. Cluster-forming threshold:

oordinates refer to the MNI coordinates of the respective

d peak voxel coordinates.

https://doi.org/10.1016/j.cortex.2020.02.024
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Table 2 e fMRI results for predicted accuracy of advice

(bmðtÞ
1:gaze) during the choice phase.

Region (left/right) Pcluster Cluster MNI
coordinates

k Tpeak x y z

R Inferior Temporal Gyrus 0 1749 7.9 52 �60 �6

R Fusiform Gyrus 4.14 40 �72 �18

R Middle Occipital Gyrus 4.01 50 �82 4

L SupraMarginal Gyrus 0 1057 6.25 �58 �24 36

L Inferior Parietal Lobule 4.4 �54 �36 50

R Precentral Gyrus 0 4401 6.15 58 10 30

L Precentral Gyrus 5.32 �34 �10 58

R Superior Frontal Gyrus 5.14 26 �6 68

L Posterior-Medial Frontal 4.8 �8 �4 68

L Superior Frontal Gyrus 4.75 �22 �8 72

L Inferior Parietal Lobule 4.74 �34 �42 50

R Superior Frontal Gyrus 4.73 20 4 72

R Postcentral Gyrus 0 1424 5.91 54 �22 34

R SupraMarginal Gyrus 5.62 62 �16 28

R Inferior Parietal Lobule 4.03 44 �34 48

L Inferior Temporal Gyrus .001 524 5.77 �50 �68 �8

L Middle Temporal Gyrus 3.29 �56 �58 2

White Matter .004 421 5.04 16 6 �12

R Putamen 4.32 18 14 �10

R Pallidum 4.08 22 2 0

R Superior Orbital Gyrus 3.95 18 22 �18

L Inferior Temporal Gyrus .028 274 4.39 �40 �28 �26

L Fusiform Gyrus 4.23 �38 �32 �28

L Inferior Temporal Gyrus 4.21 �44 �24 �20

L Cerebellum (VI) 3.93 �32 �40 �28

Table 3 e Neural correlates of differential responses to

bmðtÞ
1:gazeas a function of the subjective report of having used

the gaze during decision making.

Region
(left/right)

Pcluster Cluster MNI coordinates

k Tpeak x y z

L Insula Lobe 281 281 4.78 �26 12 �16

L Putamen 4.04 �22 16 0

R Rectal Gyrus 234 234 4.65 20 18 �12

R Putamen 3.83 30 10 0

R Insula Lobe 3.36 36 6 12
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correct outcomes against positive prediction errors during

incorrect outcomes, we also found the same activation in the

right lingual gyrus and middle occipital gyrus as when eval-

uating positive social prediction errors against baseline during

correct outcomes.

Comparing negative with positive social prediction errors,

we found the same activation in the right inferior frontal

gyrus, right insula, rolandic operculum and left posterior

medial frontal gyrus but only when evaluating incorrect
Fig. 6 e The contrast in the left shows brain areas showing diff

report of having used the gaze during decision-making. The righ

and the highest peak in the insula. Cluster-forming threshold: p

coordinate refer to the MNI coordinate of the respective slice. See

voxel coordinates.
outcomes. The activation was found in the same regions as

when evaluating negative social prediction errors against

baseline during wrong outcomes.

Next, we looked at the absolute prediction error of the

advice (dðtÞ1card), signalling the surprise about the cue colour.

When the social cuewas correct, we found significant bilateral

activations in the posterior medial frontal gyri, anterior and

middle cingulate cortex and insula (Fig. 9, Table 7). When

looking at the modulation of d
ðtÞ
1card during all outcomes irre-

spective of advice accuracy, only the cluster in the posterior-

medial, superior frontal gyrus and middle cingulate cortex

and the cluster in the left insula was significant (Table 7).

When the social cue was incorrect, no significant clusters

were found for dðtÞ1card. The results for the negative contrast on

d
ðtÞ
1card looking at activity correlated with a decrease in surprise

about the winning card colour can be seen in Table A. 7.
4. Discussion

In this study, we usedmodel-based fMRI to uncover the neural

mechanisms of inference on social and non-social cues during

a probabilistic learning task using a three-level hierarchical

Bayesian model describing parallel learning. Furthermore, we

assessed individual differences in the relative weight granted

to social over non-social information during the task and
erential responses to bmðtÞ
1;gazeas a function of the subjective

t plot depicts the correlation between the subjective report

< .001, cluster-level threshold p < .05, FWE corrected. The Y

Table 3 for further information on cluster extents and peak

https://doi.org/10.1016/j.cortex.2020.02.024
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Fig. 7 e Significant clusters for the negative contrast of the variance of the prediction of the winning card colour (bsðtÞ
1;card)

during the choice phase of the task. Cluster-forming threshold: p < .001 uncorrected, cluster-level threshold p < .05, FWE

corrected. [x y z] coordinates refer to the MNI coordinates of the respective slices. See Table 4 for further information on

cluster extents and peak voxel coordinates.

Table 4 e fMRI results for the negative contrast on the

predicted variance of the winning card colour bsðtÞ
1:cardduring

the choice phase.

Region (left/right) Pcluster Cluster MNI coordinates

k Tpeak x y z

R Insula Lobe .003 381 5.51 36 6 10

R Rolandic

Operculum

4.68 46 �2 14

Table 5 e fMRI results for negative social prediction error

(dðtÞ1gaze <0: i.e., gaze misleading) during wrong choices.

Region (left/right) Pcluster Cluster MNI
coordinates

k Tpeak x y z

R Inferior Frontal Gyrus

(p. Orbitalis)

0 769 5.9 36 32 �4

R Insula Lobe 4.95 36 22 �4

R Inferior Frontal Gyrus

(p. Triangularis)

4.82 50 28 2

R Rolandic Operculum 3.84 52 8 4

L Posterior-Medial

Frontal Gyrus

.009 312 4.87 0 4 64

Table 6 e fMRI results for positive social prediction error

(dðtÞ1gaze >0: i.e., gaze helpful) during correct choices.

Region (left/right) Pcluster Cluster MNI coordinates

k Tpeak x y z

R Lingual Gyrus 499 4.59 14 �98 �8

R Middle Occipital Gyrus 3.66 36 �96 0
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demonstrated that the estimated values of the corresponding

parameter accord with model-agnostic equivalents such as

subjective reports and eye gaze behaviour during the task. In

addition, we showed that the weight on social information

during decision-making correlates with individual differences

in brain activation during decision-making, in particular in

the putamen and insula.

4.1. Social and non-social prediction error activations

Negative social prediction errors (dðtÞ1gaze < 0, i.e., gaze

misleading) during wrong choices recruited the right anterior

insula, as well as the right inferior frontal gyrus and the left

posterior-medial frontal gyrus. For correct choices these ac-

tivations were absent, suggesting that the deception of the
Fig. 8 e Neural correlates of (dðtÞ1gaze) during wrong choice outcomes. The negative contrast on the parametric modulator of the

outcome phase reflects BOLD activity in regions correlated with negative social prediction errors. Cluster-forming threshold:

p < .001, cluster-level threshold p < .05, FWE corrected. [x y z] coordinates refer to the MNI coordinates of the respective

slices. See Table 5 for further information on cluster extents and peak voxel coordinates.
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Fig. 9 e Neural correlates of absolute learning signal (dðtÞ1card). The positive contrast on the parametric modulator reflects BOLD

activity in regions correlated with amount of surprise about the accuracy of the card colour when social cue was correct.

Cluster-forming threshold: p < .001, cluster-level threshold p < .05, FWE corrected. [x y z] coordinates refer to the MNI

coordinates of the respective slices. See Table 7 for further information on cluster extents and peak voxel coordinates.
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social cue was not relevant when participants succeeded in

selecting the winning card on a given trial.

Activation in the anterior insula in response to negative

social prediction errors is in line with insula activity in

response to misleading advice in a previous study of explicit

mentalizing (Diaconescu et al., 2017), as well as unrec-

iprocated cooperation in the trust game (King-Casas et al.,

2008; Rilling et al., 2008), social exclusion (Eisenberger

et al., 2003) and to (negative) surprise about the expected

offer of a confederate in a fairness game (Xiang, Lohrenz, &

Montague, 2013). These findings support the notion that the

anterior insula plays an important role in tracking risk in

uncertain environments (Bossaerts, 2010; d’Acremont, Lu,
Table 7 e fMRI results for
��dðtÞ1card

�� during outcome phases
where advice was correct.

Region (left/right) Pcluster Cluster MNI
coordinates

k Tpeak x y z

Advice correct

L Insula Lobe 0 568 5.54 �42 14 �2

R Middle Cingulate

Cortex

0 1020 5.39 8 20 38

L Posterior-Medial

Frontal Gyrus

5.24 �4 12 48

L Middle Cingulate

Cortex

5.1 �2 20 38

R Posterior-Medial

Frontal

4.1 8 8 54

R Anterior Cingulate

Cortex

3.78 6 30 26

L Anterior Cingulate

Cortex

3.55 2 38 26

R Inferior Frontal

Gyrus (p. Orbitalis)

.002 422 5.32 34 24 �8

R Insula Lobe 5.16 42 18 �4

All outcomes

L Insula Lobe .032 225 5.11 �44 12 �4

L Posterior-Medial

Frontal Gyrus

.001 492 4.81 �4 12 48

R Superior Frontal

Gyrus

4.08 14 4 74

R Middle Cingulate

Cortex

3.79 8 20 36
Li, Van der Linden, & Bechara, 2009). In particular, the

right anterior insula has been found to be involved in the

integration of (arousing) interoceptive states into decision-

making, potentially by signalling aversive events that are

to be avoided in the future (Rilling et al., 2008). In our study,

participants did not know if and to what extent the social

cue will provide them helpful or misleading advice. The

activity in the insula and inferior frontal gyrus to negative

social prediction errors (i.e., misleading advice) was only

observed in trials in which participants did not receive the

reward. In other words, the insula/inferior frontal gyrus

activation signalled occasions where the participant should

not have followed the gaze.

We also found significant correlations with non-social

prediction errors d
ðtÞ
1card in the left and right insula, a pattern

resembling prediction error activation in a sensory learning

paradigm (Iglesias, Mathys, Brodersen, Kasper, Piccirelli,

denOuden, et al., 2013), which underlines the insula’s role in

error monitoring irrespective of the domain of learning

(Diaconescu et al., 2017).

For positive social prediction errors (gaze more helpful

than predicted) during correct outcomes, we found activity in

the right occipital and lingual gyrus but not in reward-

associated areas as reported by others (Biele, Rieskamp,

Krugel, & Heekeren, 2011; Delgado, Frank, & Phelps, 2005;

Fareri, Chang, & Delgado, 2012; Fouragnan et al., 2013). This

may reflect the directing of visual attention towards relevant,

in our case, social stimuli. Indeed, reward learning signals

were previously also found in the occipital cortex by Payzan-

LeNestour, Dunne, Bossaerts, and O’Doherty (2013).

In the present study, social prediction errors did not

significantly activate brain regions that have been associated

with mentalization, such as the TPJ or the dmPFC (Behrens

et al., 2008; Diaconescu et al., 2017; Koster-Hale et al., 2017)

or that have been associated with observational learning such

as the ACCg (Apps et al., 2016, 2015; Lockwood et al., 2015). A

crucial difference between the present and other social

learning studies is that our study did not involve instruction

with respect to an opponent or confederate. Instead, we

merely presented the computer-generated face because we

wanted to investigate the spontaneous integration of social

information into decision making. Indeed, a subgroup of our

participants claimed not to have used the social information

https://doi.org/10.1016/j.cortex.2020.02.024
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during the task. Possibly, these participants concentrated

more on the non-social feedback to predict the outcome,

relying less on social feedback to adapt their behaviour, thus

reducing statistical power to detect effects of social inference

in the group analysis.

4.2. Social and non-social prediction and precision

We found that the belief about the social cue, i.e., the inferred

probability of the gaze to give a correct advice (bmðtÞ
1;gaze), was

associated with activity in the inferior temporal gyri, inferior

and superior parietal lobule as well as parts of the striatum

including the right putamen and pallidum. The striatum’s

involvement in tracking the belief about the accuracy of social

advice during choice accords with earlier findings regarding

the role of this region in encoding the value of social inter-

action partners (B�aez-Mendoza & Schultz, 2013; Baumgartner,

Heinrichs, Vonlanthen, Fischbacher, & Fehr, 2008; Delgado

et al., 2005; King-Casas et al., 2005; Rilling et al., 2008) and of

the non-social aspects of a learning environment (cf.

O’Doherty, 2004).

The present results suggest that the magnitude of BOLD

activity related to advice accuracy in the putamen and ante-

rior insula may be modulated as a function of individual dif-

ferences in employing the social cue during decision-making.

Specifically, the recruitment of the putamen and insula was

more pronounced for participants that integrated the social

cue into their decision-making, as indicated by subjective re-

ports. Activity changes in the insula that correlate with advice

accuracy during choice are in line with a previous finding of

insula activity correlating with the predicted value of the ac-

tion of another person (Apps et al., 2015).

Our finding that putamen and insula activities were

correlated with increased weighting of social information

needs to be seen in light of a limitation of the current study:

we did not have a non-social control condition, for instance in

form of an arrow pointing to one of the cards. Therefore, we

cannot fully determine whether individual differences in so-

cial cue weighting associated with insula and putamen ac-

tivity can be attributed to purely social or more general

learning processes. In fact, co-activation of putamen and

insula has previously been found in non-social cueing tasks

(Hopfinger, Buonocore, & Mangun, 2000). Remarkably how-

ever, these regions show significantly stronger activations for

directional gaze cues compared to arrows in a spatial cueing

task in healthy participants (Greene et al., 2011).

These findings raise the potential of our method for

studying aberrant social inference in psychiatric disorders

(Diaconescu, Hauke, & Borgwardt, 2019; Frith, 2004), which is

often associated with deficits in automatic but not explicit

integration of social cues (Callenmark, Kjellin, Ronnqvist, &

Bolte, 2014; Senju, Southgate, White, & Frith, 2009). Specif-

ically, patients with schizophrenia have a tendency to over-

attribute the meaning and salience of social signals

(Diaconescu et al., 2019; Frith, 2004). It would be interesting to

investigate whether this would be reflected in processing ab-

normalities in the insula and putamen.

Interestingly, while we found significant activations in the

right insula correlating negatively with uncertainty about the
winning card colour, we did not find differential activity in the

insula as a function of non-social cue weighting (� z). While

we did not find significant activations with regard to uncer-

tainty about the social cue, we found that fixation frequency

on the face during choice, which may in itself reflect the de-

gree of decision uncertainty (Bruny�e & Gardony, 2017), was

correlated with activations in the superior temporal gyrus (at

a less conservative statistical threshold, cf. appendix Tab A.5).

This is in line with this region’s role in mentalization and

suggests that these processes are triggered in the absence of

explicit instructions to mentalize.
5. Conclusions

The present study used model-based fMRI to demonstrate

commonalities and differences in the neural mechanisms of

social and non-social cue integration during learning and

decision-making. While activations related to the non-social

cue were associated with activity change in the middle and

anterior cingulate and insula, negative social prediction errors

additionally extended into the inferior frontal gyrus. During

decision-making, tracking the uncertainty of the non-social

cue was associated with activity change in the insula, while

tracking the probabilistic accuracy of the social cue showed

activity in the inferior temporal gyrus, putamen and pallidum,

regions known for their relevance in reward-based process-

ing. The putamen and the insula showed activity as a function

of individual differences in weighting the social cue during

decision-making. Our findings demonstrate the usefulness of

model-based fMRI for the study of the spontaneous use of

social cues in learning and decision-making, and they provide

evidence for the involvement of specific components of the

basal ganglia in these processes.
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