000887737 001__ 887737
000887737 005__ 20240708133001.0
000887737 0247_ $$2doi$$a10.1016/j.ijhydene.2021.05.203
000887737 0247_ $$2Handle$$a2128/28370
000887737 0247_ $$2WOS$$aWOS:000679997300001
000887737 037__ $$aFZJ-2020-04394
000887737 082__ $$a620
000887737 1001_ $$0P:(DE-Juel1)178692$$aPawar, Nikhil Dilip$$b0
000887737 245__ $$aPotential of Green Ammonia Production in India
000887737 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000887737 3367_ $$2DRIVER$$aarticle
000887737 3367_ $$2DataCite$$aOutput Types/Journal article
000887737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627643817_16794
000887737 3367_ $$2BibTeX$$aARTICLE
000887737 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887737 3367_ $$00$$2EndNote$$aJournal Article
000887737 520__ $$aThe threat of climate change is forcing the world to decarbonize all economic sectors. Ammonia primarily used for fertilizer production and a potential, ‘hydrogen carrier’ currently accounts for ~27% of global hydrogen consumption and ~1% of global greenhouse gas emissions. In this analysis, we assess the techno-economic potential of ammonia production using onshore wind, open-field photovoltaic and batteries for both domestic usage and export scenarios in India, which is currently one of the world's largest producer and importer of ammonia. Our results reveal that India's potential can comfortably satisfy global ammonia demand with lowest ammonia costs of 723 EUR/tNH3 and 765 EUR/tNH3 for the domestic and export scenario, respectively. To compete with conventional ammonia production a carbon tax of 224–335 €/tCO2 would be required. Finally, costs of shipping liquid hydrogen and the ‘hydrogen carrier’ ammonia are similar here giving other economic, environmental and safety factors higher relevance.
000887737 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000887737 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000887737 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b1$$eCorresponding author
000887737 7001_ $$0P:(DE-Juel1)170014$$aHeuser, Philipp$$b2
000887737 7001_ $$0P:(DE-Juel1)169156$$aRyberg, Severin David$$b3
000887737 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4
000887737 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000887737 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.05.203$$n54$$p27247-27267$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021
000887737 8564_ $$uhttps://juser.fz-juelich.de/record/887737/files/Pawar_N.D.%20et%20al_Potential%20of%20Green%20Ammonia%20Production%20in%20India.pdf$$yPublished on 2021-06-25. Available in OpenAccess from 2022-06-25.
000887737 909CO $$ooai:juser.fz-juelich.de:887737$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b1$$kFZJ
000887737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170014$$aForschungszentrum Jülich$$b2$$kFZJ
000887737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)170014$$aRWTH Aachen$$b2$$kRWTH
000887737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169156$$aForschungszentrum Jülich$$b3$$kFZJ
000887737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)169156$$aRWTH Aachen$$b3$$kRWTH
000887737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b4$$kFZJ
000887737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000887737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000887737 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000887737 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000887737 9141_ $$y2021
000887737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000887737 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887737 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887737 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000887737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000887737 920__ $$lyes
000887737 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000887737 9801_ $$aFullTexts
000887737 980__ $$ajournal
000887737 980__ $$aVDB
000887737 980__ $$aUNRESTRICTED
000887737 980__ $$aI:(DE-Juel1)IEK-3-20101013
000887737 981__ $$aI:(DE-Juel1)ICE-2-20101013