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Abstract  

Electron tomography has been widely applied to three-dimensional (3D) morphology 

characterization and chemical analysis at the nanoscale. A HAADF-EDS bimodal tomographic 

(HEBT) reconstruction technique has been developed to extract high resolution element-specific 

information. However, the reconstructed elemental maps cannot be directly converted to 

quantitative compositional information. In this work, we propose a quantification approach for 

obtaining elemental weight fraction maps from the HEBT reconstruction technique using the 

physical parameters extracted from a Monte Carlo code, MC X-ray. A similar quantification 

approach is proposed for the EDS-STEM tomographic reconstruction. The performance of the two 

quantitative reconstruction methods, using the simultaneous iterative reconstruction technique, are 

evaluated and compared for a simulated dataset of a two-dimensional phantom sample. The effects 

of the reconstruction parameters including the number of iterations and the weight of the HAADF 

signal are discussed. Finally, the two approaches are applied to an experimental dataset to show 

the 3D structure and quantitative elemental maps of a particle of flux melted metal-organic 

framework glass.  

Key words: EDS-STEM tomography, HAADF-EDS bimodal tomography, electron-induced 

X-ray quantification, three-dimensional elemental map. 

1. Introduction 

Electron tomography is a technique that characterizes the three-dimensional (3D) structure of 

a typically nanoscale object from a tilt series of two-dimensional (2D) projections [1] and has been 

widely used in biological science [2, 3] and materials science [4]. Different image modes are 

available for electron tomography. The scanning transmission electron microscope (STEM) high-

angle annular dark-field (HAADF) image is typically used for most cases in the field of material 

science to minimize the diffraction contrast that dominates in low-angle scattering which is the 

case for conventional bright-field (BF) or dark-field (DF) images of crystalline materials [5]. The 

intensity of the HAADF-STEM signal is strongly dependent on the atomic number and the 

projected thickness. HAADF tomography is thus sensitive to 3D chemical composition 

information. One disadvantage of HAADF tomography is that it only contains the accumulated 

information of all elements, which means the structures with different compositions but similar 

average atomic numbers cannot be distinguished. On the other hand, energy dispersive 
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spectroscopy (EDS) STEM tomography can be used to extract element-specific distribution maps, 

and it has been applied to a wide range of materials including bimetallic nanoparticles [6], 

metallurgical samples [7], and semiconductor nanowires [8]. However, in comparison to HAADF-

STEM tomography, it has poor signal-to-noise ratio (SNR) because of low count rates associated 

with the low probability of X-ray emission and the poor signal collection efficiency of available 

X-ray detectors [9, 10]. 

HAADF/ADF-STEM images have been used in EDS-STEM tomography for object contour 

determination [11], absorption correction [12], and shadowing effect correction [13]. Zhong et al. 

[14] proposed an HAADF-EDS bimodal tomographic (HEBT) reconstruction technique that uses 

HAADF-STEM and EDS-STEM simultaneously to extract 3D elemental maps. The technique 

links the HAADF image and EDS maps through response ratio factors using a linear relationship, 

i.e., the HAADF image is a weighted summation of the EDS maps of different elements. Using 

this technique, the element-specific features of EDS maps are extracted while also preserving the 

high SNR of the HAADF image. It has been successfully applied to the characterization of a 

nanowire device [15]. Nevertheless, it is not straightforward to obtain quantitative compositional 

information from the reconstructed intensities. To obtain the 3D elemental weight/atomic fraction 

maps, a quantification method needs to be applied. 

There are currently three approaches to the quantification of EDS-STEM images: the Cliff-

Lorimer method [16], the ζ-factor method [17], and the partial cross-section method [10]. The 

Cliff-Lorimer method connects the weight fractions, 𝐶𝐴 and 𝐶𝐵, of two constituent elements A and 

B to their detected characteristic X-ray intensities, 𝐼𝐴 and 𝐼𝐵 using the following equation [16]: 

 𝐶𝐴
𝐶𝐵
= 𝑘𝐴𝐵

𝐼𝐴
𝐼𝐵
 , (1) 

where 𝑘𝐴𝐵  is the Cliff-Lorimer factor (k-factor), which can be estimated using theoretical 

calculations or experiments [17]. The theoretical calculation of k-factors is fast but gives rise to 

relatively high systematic errors (±10%− 20% for the quantification of 2D elemental map) [17, 

18], while the experimental determination is accurate with relative errors around ±1% but is often 

complicated and time-consuming [17]. An improved quantitative approach, the ζ-factor method, 

gives the relationship between the detected X-ray intensity of element A, 𝐼𝐴 and the mass thickness 

𝜌𝑡 (𝜌 and 𝑡 are the specimen density and thickness) as follows [17]: 
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𝜌𝑡 = 𝜁𝐴

𝐼𝐴
𝐶𝐴𝐷𝑒

 , (2) 

where 𝜁𝐴  is the ζ-factor and 𝐷𝑒  is the total electron dose. The ζ-factor method shows great 

advantages in absorption correction, spatial resolution calculation, etc. because it refines the 

thickness information. Moreover, the experimental determination of the ζ-factor is easier as it can 

be performed using single element standards. 

A further, recently emerging approach uses EDS partial cross-sections to quantify X-ray counts 

in an absolute manner [10, 19]. The EDS partial cross-section of a single atom of element A is 

determined from a pure element standard using the following equation: 

 
𝜎𝑝𝑎𝑟
𝐴 =

𝐼𝐴
𝐷𝑒𝑛𝐴𝑡

 , (3) 

where 𝑛𝐴𝑡 is the atom density per unit area in atoms/m2, in which 𝑛𝐴 is the atom volume density 

and 𝑡 is the thickness. Although this approach is based on the ζ-factor method, the implementation 

of this approach is simpler because it is on an absolute scale [19]. A similar quantification method 

to the ζ-factor method and partial cross-section is used in our calculation, although here the 

correction factor is determined through physical models instead of experiments. 

The main objective of this paper is to present a quantification method using theoretical cross-

sections to obtain 3D elemental maps from both EDS-STEM tomography and HEBT through the 

simultaneous iterative reconstruction technique (SIRT). The effects of the reconstruction 

parameters are also studied in this work. Using a 2D phantom sample, the image qualities of the 

direct reconstructed maps and the quantified maps are investigated and compared for EDS-STEM 

tomography and HEBT. Both techniques are then applied to an experimental dataset of a particle 

of flux melted metal-organic framework glass, denoted ag [(ZIF-67)0.2(ZIF-62)0.8], where ag refers 

to amorphous glass structure, ZIF-67 and ZIF-62 refer to two compositionally distinct zeolitic 

imidazolate frameworks, and the subscripts refer to the relative fraction in the bulk glass. The 

synthesis and traditional quantitative EDS tomography of the glass particle have been explicitly 

described in previous reports [20, 21]. Here we look specifically at the implementation and results 

from the quantified HEBT reconstruction. 
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2. Methods 

The following calculations are based on the thin film approximation, which means that the 

absorption and secondary fluorescence are negligible, as is the multiple scattering of the incident 

electrons. The quantifications of the EDS-STEM tomographic and HEBT reconstructions and the 

simulation of the HAADF and EDS signals using MC X-ray [22] will be introduced in this section. 

2.1. Quantification of the EDS-STEM tomographic reconstruction 

The measured characteristic intensity of a certain X-ray line of element A from a thin film is 

expressed using the equation [23]: 

 
𝐼𝐴 = 𝑁𝑉

𝜎𝑖𝑜𝑛
𝐴 𝜔𝐴𝑝𝐴
𝑀𝐴

𝐶𝐴𝜌𝑡𝐷𝑒 (
𝛺

4𝜋
) 𝜀𝐴 , (4) 

where 𝑁𝑉 is Avogadro’s number, 𝜎𝑖𝑜𝑛
𝐴 is the ionization cross-section, 𝜔𝐴 is the fluorescence yield, 

𝑝𝐴 is the relative intensity, 𝑀𝐴 is the atomic weight, 𝛺 is the detector solid angle, and 𝜀𝐴 is the 

detector efficiency. To better demonstrate the relationship between the X-ray intensity and the 

weight fraction, equation 4 can be written as follows: 

 𝐼𝐴 = 𝑛𝑓𝐴𝐶𝐴𝜌𝑡, (5) 

where 𝑛 is a constant for a certain measurement and 𝑓𝐴 is an element-specific factor, which are 

calculated as follows:  

 
𝑛 = 𝑁𝑉𝐷𝑒 (

𝛺

4𝜋
), (6) 

 
𝑓𝐴 =

𝜎𝑖𝑜𝑛
𝐴 𝜔𝐴𝑝𝐴𝜀𝐴
𝑀𝐴

.  
(7) 

In electron tomography, for a heterogeneous sample, the measured characteristic X-ray 

intensity for a single measurement of the projection image can be expressed in an integral form 

along the electron trajectory inside the sample, 𝑡′, 

 
𝐼𝐴 = 𝑛𝑓𝐴∫𝐶𝐴(𝑡′)𝜌(𝑡′)𝑑(𝑡

′). (8) 

The continuous line integral can be replaced by a discrete ray-sum [14]: 
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𝐼𝐴 = 𝑛𝑓𝐴∑𝑤𝑗𝐶𝐴,𝑗𝜌𝑗

𝑁

𝑗=1

 , (9) 

where 𝑤𝑗 is determined by the volume intersected between the electron beam and the jth voxel [24]. 

N is the number of voxels in the specimen for the reconstruction.  

For EDS-STEM tomography, multiple measurements are performed for various beam positions 

and tilt angles. The number of measurements, M equals the product of the number of tilt angles 

and the number of beam positions. For a certain element A, the X-ray intensity for the ith 

measurement, 𝐼𝐴,𝑖 can be expressed as follows: 

 

𝐼𝐴,𝑖 = 𝑛𝑓𝐴∑𝑤𝑖𝑗𝐶𝐴,𝑗𝜌𝑗

𝑁

𝑗=1

 . (10) 

The tomography reconstruction is often formulated as a least square minimization: 

 𝑿𝐴
∗ = argmin

𝑋𝐴

||𝑰𝐴 −𝑾𝑿𝐴||2
2 , (11) 

where 𝑰𝐴 ∈ 𝑹
𝑀 is the X-ray intensity matrix, 𝑾 ∈ 𝑹𝑀×𝑁 is the projection matrix, and 𝑿𝐴 ∈ 𝑹

𝑁 is 

the reconstruction quantity. According to equation 10, we know that the reconstructed quantity for 

the jth voxel, 𝑿𝐴,𝑗 =  𝑛𝑓𝐴𝐶𝐴,𝑗𝜌𝑗. Since the sum of the weight fractions of the constituent elements 

for a certain voxel is always one, i.e., ∑ 𝐶𝐴,𝑗
𝑘
𝐴=1 = 1, where k is the number of elements, using a 

similar calculation to the ζ-factor method, considering that the solid angle is the same for all the 

elements, we have 

 
𝐶𝐴,𝑗 =

𝑿𝐴,𝑗/𝑓𝐴

∑ 𝑿𝐴,𝑗/𝑓𝐴
𝑘
𝐴=1

 . (12) 

According to the definitions, the partial cross-section can be calculated using the factor 𝑓𝐴 by 

𝜎𝑝𝑎𝑟
𝐴 = 𝑓𝐴 ∙ 𝛺/4𝜋 ∙ 𝑀𝐴.  

SIRT is used to solve the least square problem [25]. SIRT updates the reconstructed values at 

each iteration using the data from all the projections simultaneously [26]. Its primary advantage is 

a reduced sensitivity to noise or other errors in under-sampled experimental data [27]. 

Unfortunately, it has the semi-convergence property, that the error initially decreases but starts to 

increase after some iterations when dealing with noisy data [28]. In this work, a non-negativity 
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constraint was applied to SIRT algorithm by setting individual negative voxels to zero in each 

iteration since the reconstructed values should always remain non-negative [29].  

The normalization in equation 12 may magnify the noise of the reconstructed map by changing 

a small value to one. Therefore, prior to this normalization, a thresholding was performed in order 

to define the voxels within the particle, that any intensities smaller than the threshold were set to 

zero based on the summation of all the elemental maps of 𝑿𝐴,𝑗/𝑓𝐴. The exact threshold value was 

determined using a modified edge spread function (ESF) fitting approach [21]. The approach 

calculates the particle volume for a series of threshold values, and the variation of the threshold 

relative to the particle volume can be fitted using the ESF. Therefore, the smallest gradient of the 

particle volume over the threshold corresponds to the most appropriate threshold value. The same 

process was applied to the quantification of the HEBT reconstruction. For both the EDS-STEM 

and HEBT reconstruction, the thresholding step was applied after the reconstruction process as a 

post-processing step for the purpose of visualizing and interpreting the quantification within the 

volume of the particle. 

2.2. Quantification of the HEBT reconstruction 

It is worth noticing that HEBT can be applied only when two conditions are satisfied: first, 

both the HAADF and EDS data fulfill the projection requirement, that the signal is a monotonic 

function of the thickness and composition [30], and secondly, the HAADF signals are the weighted 

sum of the EDS signals for all the elements present [31].  

The HAADF-STEM signal IH is the number of electrons that are scattered at high angles and 

can be expressed as the sum of the scattered electrons by each element present in the specimen 

[14]: 

 

𝐼𝐻 = 𝐷𝑒
𝐻𝑁𝑣∑𝜎𝑒𝑙𝑎

𝐴 ∫𝐶𝐴(𝑡′)𝜌(𝑡′)𝑑(𝑡′)

𝑀𝐴

𝑘

𝐴=1

 , (13) 

where 𝐷𝑒
𝐻 is the electron dose for HAADF measurement, A is the index of the constituent element, 

k is the number of elements in the specimen, 𝜎𝑒𝑙𝑎
𝐴  is the elastic scattering cross-section, and 𝐶𝐴(𝑡′) 

is the weight fraction of element A at 𝑡′. It can be written in the same form as equation 9: 
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𝐼𝐻 = 𝐷𝑒
𝐻𝑁𝑣∑𝑧𝐴∑𝑤𝑖𝑗𝐶𝐴,𝑗𝜌𝑗

𝑁

𝑗=1

𝑘

𝐴=1

 , (14) 

where 𝑧𝐴 = 𝜎𝑒𝑙𝑎
𝐴 /𝑀𝐴.  

The HEBT reconstruction technique proposed by Zhong et al. [14] links the HAADF signals 

with the EDS signals using a response ratio factor 𝑟𝐴: 

 

𝐼𝐻 = ∑𝑟𝐴𝐼𝐴

𝑘

𝐴=1

 (15) 

and, 

 
𝑟𝐴 =

𝐷𝑒
𝐻𝑁𝑣𝑧𝐴
𝑛𝑓𝐴

 (16) 

Since the value of 𝑟𝐴 might differ for various instruments or experimental setups, it is typically 

estimated using the measured intensities 𝐼𝐻 and 𝐼𝐴 through linear regression. The reconstruction 

using HEBT is to minimize the least square of the measured and estimated signals (see [14] for 

more details),  

 𝑿𝒃
∗
= argmin

𝑋𝑏
||𝑰𝒃 −𝑾𝒃𝑿𝒃||2

2 (17) 

where 𝑰𝒃 =

(

 
 
 

(1 − 𝛼)𝑟1𝑰1
⋮

(1 − 𝛼)𝑟𝐴𝑰𝑒
⋮

(1 − 𝛼)𝑟𝑘𝑰𝑘
𝛼𝑰𝐻 )

 
 
 

, 𝑾𝒃 =

(

 
 
 

(1 − 𝛼)𝑾 … ∅ … ∅
⋮ … ⋮ … ⋮
∅ … (1 − 𝛼)𝑾 … ∅
⋮ … ⋮ … ⋮
∅ … ∅ … (1 − 𝛼)𝑾
𝛼𝑾 … 𝛼𝑾 … 𝛼𝑾 )

 
 
 

, 

and 𝑿𝒃 =

(

 
 

𝑿𝟏
𝒃

⋮
𝑿𝑨
𝒃

⋮
𝑿𝒌
𝒃)

 
 

, where 𝑿𝑨
𝒃 ∈ 𝑹𝑁, in which 𝑋𝐴,𝑗

𝑏 = 𝑧𝐴𝐶𝐴,𝑗𝜌𝑗, and 𝛼 is the balance factor between 

the HAADF and EDS terms, which indicates the weight of the HAADF term (0 < 𝛼 < 1). 

With the reconstructed quantity 𝑿𝒃, the composition of element A for the jth voxel can be 

calculated as follows:  
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𝐶𝐴,𝑗 =

𝑋𝐴,𝑗
𝑏 /𝑧𝐴

∑ 𝑋𝐴,𝑗
𝑏 /𝑧𝐴

𝑘
𝐴=1

 . (18) 

2.3. Forward modeling using MC X-ray 

The required physical parameters for the quantification including scattering and ionization 

cross-sections are extracted from MC X-ray [22], a Monte Carlo program for simulating electron 

trajectories within the solid and computing X-ray emissions. The physical models used for 

calculating those parameters are shown in Table 1. And the extracted physical parameters used in 

this work are listed in Table 2. 

MC X-ray [22] was used to calculate the simulated HAADF and EDS signals from a phantom 

sample. The quantification processes using both EDS-STEM tomography and HEBT were applied 

to the simulated signals, and the reconstructed images (both before and after quantification) were 

compared with the phantom sample to assess the accuracy of each process. The HAADF detector 

inner collection angle used in MC X-ray for high angle and low angle are 611 and 94 mrad, 

respectively.  

Table 1 Physical models used in MC X-ray [22] 

Physical parameters Physical models 

Elastic scattering cross-section Mott & Browning 1991 [32] 

Ionization cross-section Bote 2009 [33] 

Fluorescence yield Perkins et al. 1991 [34] 

Relative intensity Perkins et al. 1991 [34] 

 

Table 2 Physical parameters extracted from MC X-ray 

X-ray line Ag Lα Au Mα Co Kα Zn Kα 

Incident beam energy (keV) 100 80 

Elastic scattering cross 

section (barn) 
9.90×106 1.98×107 5.59×106 6.51×106 

Ionization cross section 

(barn) 
2.44×103 7.46×103 420 302 
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Fluorescence yield 0.057 0.030 0.369 0.466 

Relative intensity 0.816 0.999 0.891 0.890 

 

3. Results and discussion  

3.1. A 2D phantom sample  

3.1.1. Input 

To assess the accuracy of the proposed quantification approaches, a 2D phantom sample of an 

alloyed Ag-Au nanoparticle, a slice on the X-Z plane, was created. The weight fractions of Ag and 

Au are presented in Figure 1. The phantom sample has a core-shell structure, in which the 

composition of the core is 80 wt% Au and 20 wt% Ag, while the shell has 20 wt% Au and 80 wt% 

Ag.  

 

Figure 1 Weight fractions of a) Ag and b) Au for the phantom sample: a slice of Ag-Au alloyed particle with a core-shell 

structure. Core: 80 wt% Au and 20 wt% Ag; Shell: 20 wt% Au and 80 wt% Ag. 

Simulations were performed using MC X-ray at 100 keV for 97 beam positions from -72 to 72 

nm with a step size of 1.5 nm and 31 tilt angles from -75° to 75° with a step size of 5°. The HAADF 

sinogram (as presented in Figure 2 a) was obtained with a simulated electron number of 100,000 

per pixel, which corresponds to an electron fluence of 444 e/A2(electrons per square angstrom ). 

Pixels along the horizontal and vertical axes represent the signals for varying beam positions and 

varying tilt angles, respectively. To mimic reasonable experimental conditions, an acquisition time 

of 0.5 s for each pixel and a beam current of 100 pA were used, indicating an electron number of 
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3.121×108 per pixel, which corresponds to an electron fluence of 1.39×106 e/A2. Since the 

experimental EDS signals follow a Poisson distribution [35], Poisson noise was applied to the 

simulated EDS sinograms, and the resulting sinograms of the Ag Lα line and Au Mα line are shown 

in Figure 2 b) and c), respectively. 

Before performing the tomography reconstruction, a Gaussian filter with a standard derivation 

of 0.8 was applied to the EDS elemental maps as a denoise process to improve the SNR. It was 

implemented using the multidimensional Gaussian filter function in Python library SciPy [36]. The 

EDS sinograms with Gaussian filter are presented in Figure 2 d) and e). For both EDS-STEM 

tomography and HEBT, the EDS sinograms with Gaussian filter were used as input. And the 

original HAADF sinogram was used for HEBT. 

 

 

Figure 2 Sinograms of a) HAADF, b) EDS for the Ag Lα line, c) EDS for the Au Mα line, d) EDS for the Ag Lα line adding a 

Gaussian filter, and e) EDS for the Au Mα line adding a Gaussian filter. Pixels along the horizontal and vertical axes represent 

the signals for varying beam positions and varying tilt angles, respectively. 

3.1.2. EDS-STEM tomographic reconstruction 

The EDS-STEM tomographic reconstruction was first performed using SIRT for the sinograms 

shown in Figure 2 d) and e). The reconstructed images were computed for different numbers of 

iterations, n = 20, 50 and 100, to investigate its effect. The reconstructed images of the quantity 

𝑿𝐴 for Ag and Au are presented in Figure 3. Note that the quantity 𝑿𝐴 is not on an absolute scale. 
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For Ag after 20 iterations (as shown in Figure 3 a), the core-shell structure can be distinguished, 

in which the intensity of Ag is higher in the shell than the core. However, the boundaries both 

between the core and shell as well as between the object and background are blurry. When n 

increases to 50 (Figure 3 b), the contrast is improved, and the boundaries become clearer. At a 

higher n, however, an increased noise is observed (Figure 3 c) because of the over-fitting problem. 

As for Au, similarly, an increased noise is presented with an increase in n (as shown in Figure 3 d, 

e, and f). For all three numbers of iterations, the shape of the core with an increased Au intensity 

is well-preserved, while part of the boundaries is not correctly recognized. For example, several 

pixels in the bottom of the shell are recognized as background, which is due to the low SNR and 

large tilt angle increment (5° for this case) of the projection images and the relatively low 

concentration of Au in the shell.  

 

Figure 3 Ag and Au element maps reconstructed using SIRT through EDS-STEM tomography when the number of iterations n = 

20, 50, and 100 respectively. a), b), and c) are on the same intensity scale, and d), e), f) are on the same intensity scale. 

To better assess the quality of the reconstructed image, two types of image quality metrics are 

calculated: structural similarity index (SSIM) and mean squared error (MSE). SSIM [37] evaluates 

the structural similarity between two images considering three components: luminance, contrast, 

and structure. Since the intensities of the reconstructed images are not on the same scale with the 
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reference image (phantom sample), only the structure component is compared. The structure 

component, s, of two signals x and y (with the same size) are calculated as follows [37]: 

 
𝑠(𝒙, 𝒚) =  

𝜎𝑥𝑦 + 𝐶

𝜎𝑥𝜎𝑦 + 𝐶
 , (19) 

where 

 

𝜎𝑥𝑦 = 
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑁

𝑖=1

, (20) 

 

𝜎𝑥 = (
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)

2

𝑁

𝑖=1

)1/2, 
(21) 

 

𝜎𝑦 = (
1

𝑁 − 1
∑(𝑦𝑖 − 𝜇𝑦)

2
𝑁

𝑖=1

)1/2 , 
(22) 

and C is a factor to avoid instability when 𝜎𝑥𝜎𝑦 is very close to zero, 𝑁 is the size of x and y, 𝜇𝑥 

and 𝜇𝑦 are the average intensity of x and y. C is set to zero in our calculations but still included in 

equation 19 for consistency with common implementations. An SSIM value that is close to one 

means better structural similarity than for a value close to zero. MSE is the average of the squares 

of the errors between two signals. MSE between the direct reconstructed image 𝑿𝐴  and the 

reference image (Figure 1 a and b) is computed using a scaling factor since they are in different 

scales, and the scaling factor is chosen to minimize the MSE. For the quantified weight fraction 

maps, MSE is calculated directly without scaling.  

Figure 4 shows the variations of a) SSIM and b) MSE relative to the number of iterations for 

the reconstructed images obtained using the EDS-STEM tomographic reconstruction. For both 

metrics, a better image quality for Au is found than for Ag. This difference is likely due to the 

slightly higher X-ray intensities of the Au Mα line (as shown in Figure 2 d and e), which means 

lower noise from the sinogram. Alternatively, the higher contrast between the shell and the 

background for Ag than for Au may impair the image quality for Ag to a greater extent due to an 

imperfect boundary. As n increases, the image quality for Ag initially improves but then starts to 

fall off after 50 iterations, whilst for Au this drop off occurs after only 20 iterations. This is 

consistent with what we can observe qualitatively in Figure 3. Therefore, the approximately 

optimal value for the number of iterations for Ag and Au are 50 and 20, respectively.  
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Figure 4 Variation of a) SSIM and b) MSE relative to n, the number of iterations for the EDS-STEM tomographic reconstruction. 

From the reconstructed images of 𝑿𝐴, Figure 3, the true weight fractions of Ag and Au were 

computed using equation 12. The computed weight fraction maps for different numbers of 

iterations are presented in Figure 5. In general, the core and shell are well segmented, and the 

compositions of both regions are close to the reference values. The boundary between the object 

and the background appears sharper after quantification primarily because the noise outside the 

object is removed by the thresholding step. The image quality of the quantitative element maps as 

shown in Figure 6 are thus slightly improved relative to the image quality of 𝑿𝐴. The quantification 

process to a certain extent neutralizes the difference between the intensities of Ag and Au, making 

the relatively sharp boundary between the core and shell (as shown in Figure 3 a and d) become a 

‘belt-like’ region (Figure 5 a and b) when the number of iterations is 20. The variation of the image 

quality relative to the number of iterations (Figure 6) presents a similar trend as that for the images 

of 𝑿𝐴 (Figure 4). 
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Figure 5 Quantitative elemental maps (weight fraction) of Ag and Au for different numbers of iterations, n = 20, 50, and 100. All 

figures are on the same intensity scale.  

 

Figure 6 Variation of a) SSIM and b) MSE for the  reconstructed weight fraction maps from EDS-STEM tomography as a 

function of n, the number of iterations. 

3.1.3. HEBT reconstruction 

In this section, results obtained using the HEBT reconstruction are presented. Figure 7 shows 

the reconstructed Z-contrast image from the HAADF-STEM sinogram after 50 iterations. 

Compared with the reconstructed elemental maps shown in the last section, the boundaries both 

between the object and background as well as between the core and shell can be distinguished 



16 

 

clearly, and there is notably higher contrast. It also shows an excellent agreement with the input 

phantom structure. Therefore, it is reasonable to assume the HEBT reconstruction has some 

advantages over the EDS-STEM tomographic reconstruction as it incorporates the HAADF signal.  

The response ratio factors 𝑟𝐴𝑔 and 𝑟𝐴𝑢 were calculated using the gradient descent method [38] 

to link the HAADF-STEM and EDS-STEM images by a linear relationship. The calculated 𝑟𝐴𝑔 

and 𝑟𝐴𝑢 are 805 and 987, respectively, with a coefficient of determination R2 of 0.982, indicating 

that more than 98% of the measured data can be explained by the linear model. 

 

Figure 7 Reconstructed Z-contrast image from HAADF-STEM tomography after 50 iterations using SIRT. 

Two parameters affect the HEBT reconstruction process: n, the number of iterations and α, the 

weight of the HAADF signal. We performed the HEBT reconstruction for different n: 100, 200, 

and 500, and varying α, ranging from 0 to 1. Note that the number of iterations required for the 

HEBT reconstruction is much larger than that for the EDS-STEM tomographic reconstruction due 

to the increased data volume. For the EDS-STEM tomographic reconstruction, the input data is 

the EDS sinogram for a certain X-ray line with a pixel size of M, while for the HEBT 

reconstruction, the input data is the EDS sinograms for all the X-ray lines of the elements present 

and the HAADF sinograms, with a total size of 𝑀 × (𝑘 + 1), where k is the number of elements 

present in the specimen. Therefore, more data needs to be optimized for the HEBT reconstruction, 

requiring an increased number of iterations. Several numbers of iterations smaller than 100 were 

also tested, however they demonstrated far worse quality than the results presented here. The 

qualities of the reconstructed images for the quantity 𝑿𝒃 are evaluated, taking Figure 1 as reference 

images.  
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The variations of SSIM and MSE are shown in Figure 8 a) and b), respectively, as a function 

of α for different n. A better image quality of Au is observed compared with Ag, which is similar 

to the results from EDS-STEM tomography. For each number of iterations, the image quality is 

first improved as α increases, and then deteriorates after reaching the best. To better investigate 

the effect of α, the weight of the HAADF signal, we present the reconstructed images for α = 0.7, 

0.8, and 0.9 after 200 iterations in Figure 9. As α changes from 0.7 to 0.8, the noise level appears 

suppressed since the low noise HAADF data dominates more. As it continues increasing to 0.9, 

though with less noise, the boundary between the shell and core becomes blurry, and the contrast 

deteriorates. Figure S1 presents the intensity profiles across the boundary for the elemental maps 

shown in Figure 9 to better observe the variation of the boundary with α. The variation is because 

as α increases, the EDS-STEM terms contribute less, which makes the optimization process to 

minimize the residuals of the EDS-STEM terms inefficient. If the residual of the HAADF-STEM 

term has been minimized while those for the EDS-STEM terms remain large, the back projection 

from the HAADF-STEM image will appear in the reconstructed elemental maps. Therefore, in this 

case, the reconstructed elemental maps of both Ag and Au become similar to the image from the 

HAADF-STEM reconstruction (Figure 7), showing worse contrast.  

 

Figure 8 Variation of a) SSIM and b) MSE of Ag and Au as a function of α, the weight of the HAADF signal, for different n: 100 

(green), 200 (blue), and 500 (red) for the direct reconstructed maps using HEBT. Solid lines represent the data for Ag, and 

dashed lines represent the data for Au. The yellow horizontal lines indicate the best image quality obtained using the EDS-STEM 

tomographic reconstruction.  
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Figure 9 Elemental maps directly reconstructed using HEBT for Ag and Au for different α, the weight of the HAADF signal: 0.7, 

0.8, 0.9 after200 iterations. a), b), and c) are on the same intensity scale, and d), e), and f) are on the same intensity scale. 

As n increases, the image quality typically improves before subsequently deteriorating due to 

the overfitting problem. Just as shown in Figure 10 d), e) and f), the Au elements map shows an 

improved contrast when n increases from 50 to 200. However, upon increasing to 500 iterations, 

the noise begins to dominate again. The approximately optimal value of n is thus found to be 200. 

Although, the optimal value of n changes as α increases. As shown in Figure 8, the approximately 

optimal value of n for Ag is 100 when α is smaller than 0.6, and the value changes to 200 when α 

is between 0.6 and 0.8. An optimal value around 500 is found for α larger than 0.8. This results 

from the inefficiency of the optimization process for the EDS-STEM terms as α increases. An 

increased number of iterations is required to reduce the appearance of the back projection of the 

HAADF-STEM image in the reconstructed elemental maps in the case when the residual of the 

HAADF-STEM term is minimized and those for the EDS-STEM terms remain large. 

The yellow horizontal lines in Figure 8 represent the best reconstruction image quality obtained 

using the EDS-STEM tomographic reconstruction to be compared with the HEBT reconstruction. 

The best image quality is obtained when n=50 for Ag (yellow solid line) and 20 for Au (yellow 

dashed line). For both Ag and Au, the HEBT tomographic reconstruction shows better images 

under most circumstances as long as α is larger than 0.5. The element maps for Ag demonstrate a 
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greater improvement in image quality compared to Au possibly due to the fact that the image 

quality of Ag is more sensitive to the change in the boundary resulting from higher contrast 

between the shell and the background. When comparing the reconstructed images from EDS-

STEM tomography (Figure 3) with that of HEBT (Figure 9 and Figure 10), one improvement that 

stands out is that the boundary between the object and the background is defined more clearly for 

HEBT (see Figure S2 for the comparison of the intensity profiles across the boundary). This is 

primarily a benefit of the high SNR of the HAADF sinogram. Within the object, the segmentation 

of the core and shell relies partly on the choice of the reconstruction parameters like n and α. 

 

Figure 10 Elemental maps for Ag and Au directly reconstructed using HEBT for different n, the number of iterations: 50, 200, 

and 500 when α=0.9 (α is the weight of the HAADF signal). a), b), c) are on the same intensity scale, and d), e), f) are on the 

same intensity scale. 

From the reconstructed images of 𝑿𝒃, the quantitative elemental maps of Ag and Au were 

calculated using equation 18. The quantitative elemental maps of Figure 9 and Figure 10 are shown 

in Figure 11 and Figure 12, respectively. Similar effects of n and α are observed as previously seen 

in the reconstructed images of 𝑿𝒃. For the same number of iterations, an increase in α can reduce 

the level of noise but simultaneously results in a blurring of the boundary between the core and 

shell (see Figure S3 for the intensity profiles of the elemental maps shown in Figure 11). For a 
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constant α, an increase in n initially improves the contrast but subsequently brings more noise at 

higher α due to the over-fitting problem.  

 

Figure 11 Quantitative elemental maps of Ag and Au (weight fraction) from HEBT for different α, the weight of the HAADF 

signal: 0.7, 0.8, 0.9 after 200 iterations. All figures are on the same intensity scale. 
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Figure 12 Quantitative elemental maps of Ag and Au (weight fraction) from HEBT for different n, the number of iterations: 50, 

200, and 500 with α=0.9 (α is the weight of the HAADF signal). All figures are on the same scale. 

 

Figure 13 Variation of a) SSIM and b) MSE as a function of α for different n: 100 (green), 200 (blue), and 500 (red) for the 

quantitative elemental maps obtained using HEBT. Solid lines represent the data for Ag, and dashed lines represent the data for 

Au. The yellow horizontal lines indicate the best image quality obtained using the EDS-STEM tomographic reconstruction. 

The variations of SSIM and MSE as a function of α for the quantitative elemental maps are 

presented in Figure 13 for different n. The yellow horizontal lines correspond to the best image 

quality obtained from the quantification of the EDS-STEM tomographic reconstruction (solid line 

for Ag and dashed line for Au). The quality of the Ag elemental map is greatly improved by the 

well-determined object boundary. However, the quality of the Au elemental map is at a comparable 
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level with the Au map before quantification. The different effect on Ag and Au is intrinsic, i.e., 

because the particle contains higher Ag content in the shell (80 wt%) and it therefore should 

demonstrate a higher contrast in the quantified composition map. The slight unusual fluctuation of 

the two metrics with α results from the threshold determination to define the particle volume, 

because this was done independently via the ESF method each time. 

3.2. A particle of flux melted metal-organic framework glass 

The two reconstruction techniques and quantification processes were next applied to 3D 

characterisation of a real experimental dataset obtained from a multicomponent zeolitic 

imidazolate framework (ZIF) glass: the ag [(ZIF-67)0.2(ZIF-62)0.8] flux melted glass. 

3.2.1. Specimen and experimental data 

ZIFs, a subcategory of metal-organic framework, are composed of tetrahedral metal nodes 

connected by imidazolate-based organic ligands [39]. ag [(ZIF-67)0.2(ZIF-62)0.8] is generated 

through the melting of ZIF-67 [Co(mlm)2, mlm: 2-methylimidazolate, C4H5N2
−] mixed with ZIF-

62 [Zn(lm)1.75(blm)0.25, lm: imidazolate, C3H3N2
− , and blm: benzimidazolate, C7H5N2

−  ] and 

brought to above the melting point of ZIF-62 [20]. The subscripts, 0.2 and 0.8, refer to the weight 

fraction of each component, and ag refers to melt quenched glass. For additional details of the 

synthesis and previous EDS tomography analysis of this sample, refer to [20] and [21], 

respectively.  

The experimental maps were acquired on a Thermo Fisher 80-200 keV probe corrected Titan 

with a four quadrant Super-X EDS detector operating at 80 keV. The EDS spectrum image data 

sets were acquired for different tilt angles ranging from -72° to 54° with a tilt increment of around 

9°. For each tilt angle, an ADF image was simultaneously obtained using a Fischione HAADF 

detector. ADF images have been proved to satisfy the projection requirement, that the signal is a 

monotonic function of the thickness, in a prior report [21]. It is, therefore, reasonable to use this 

signal in conjunction with EDS for a HEBT reconstruction. Please refer to reference [21] for more 

details about the experimental setup. 

EDS maps were recorded with a pixel size approximately equal to the beam diameter, and then 

subsequently re-binned to make sure that each pixel contains enough X-ray counts. Both the EDS 

spectrum images and ADF images (required to have the same size as EDS maps) were re-binned 



23 

 

to half of their original number of pixels in both spatial dimensions. The pixel size after re-binning 

is 2.74 ×  2.74 nm. For the acquired EDS spectra, the background was subtracted, and the 

intensities of the peak of the C, N, Co, and Zn Kα line were integrated respectively to generate 

EDS maps using HyperSpy [40], an open source Python library. The ADF images and EDS maps 

for the same tilt angle were aligned by aligning the center of mass of ADF image with the elemental 

map of N. To reduce the shadowing effect, the total signals of a tilt series EDS maps for a certain 

element were normalized to the same value [41]. The in-plane alignment and tilt-axis shift and 

rotation were then performed for both ADF and EDS images. Figure 14 shows the processed ADF 

and EDS images of the C, N, Co and Zn Kα line for tilt angles: -45°, 0°, and 45°.  

 

Figure 14 ADF and EDS maps for the C, N, Co, and Zn Kα line for tilt angles of -45°, 0°, and 45° . Note the presence of the 

carbon support film is visible in both the ADF maps and the EDS maps for the C Kα line, and the ADF maps are presented here 

on an inverted intensity scale. 

3.2.2. Tomographic reconstruction 

Since the weight fraction of H is relatively small for both components (4.6 wt% in ZIF-67 and 

3.1 wt% in ZIF-62), the contribution of H to the elastic scattering of electrons, i.e., HAADF signals 

is ignored. Therefore, only four elements: C, N, Co, and Zn are considered for the HEBT 

reconstruction.  
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The HEBT reconstructions were performed for around 260 slices with 𝛼 = 0.8 and n = 100. 

The computed response factors for the four elements are 𝑟𝐶 = 1921, 𝑟𝑁 = 3792, 𝑟𝐶𝑜 = 5179, and 

𝑟𝑍𝑛 = 6502 with a coefficient of determination 𝑅2 = 0.92. The reconstructed elemental maps are 

compared with the results from the EDS-STEM tomographic reconstruction in Figure 15, which 

presents the 2D reconstructed images for slice number 70, 130, and 190.  

 

Figure 15 Reconstructed elemental maps for xz orthoslice (the cross-section view in/out of the paper for the maps shown in 

Figure 14) using the traditional single signal tomography reconstruction and HEBT reconstruction for three slices: no. 70, 130, 

and 190. 

For both EDS-STEM tomography and HEBT, no clear boundaries between the Zn-rich and 

Co-rich components is observed. Instead, the interface displays the diffusion of the two 

components resulting in a region comprised of both Co and Zn, consistent with what has been 

presented in prior reports [20, 21]. Moreover, a higher intensity of Co and little intensity of Zn are 
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shown in the upper-left region of the particle, likely referring to remnant pure single-phase ZIF-

67. Meanwhile the bottom of the particle, displaying high Zn intensity and an apparent absence of 

Co, likely contains a region corresponding to pure ZIF-62 domain. As we increase the slice number 

from 70 to 190, the cross-sectional area of the particle increases.  

Compared with the EDS-STEM tomographic reconstruction, the HEBT reconstruction, in most 

cases, displays clearer boundaries and a better contrast. For example, for the Co element map at 

slice no.190, noise shows in the bottom-right region outside the particle for the EDS-STEM 

tomographic reconstruction, while it is mostly absent in the reconstructed map from HEBT, 

making the blurry boundary between the particle and the background much sharper.  

Some slight discrepancies in the shape of the particle between the two reconstruction 

techniques are observed. For example, for slice no.70, a “stripe-like” region along the bottom-right 

side in the HEBT reconstruction is missing in the elemental maps of the EDS-STEM tomographic 

reconstruction. This might be due to the misalignment between the ADF images and EDS maps 

considering that ADF images have only one frame, while EDS spectrum images were acquired as 

a summation over multiple frames with drift correction. 

3.2.3. Quantification  

The reconstructed images were then quantified using the physical parameters acquired from 

MC X-ray. Considering that the X-ray intensities of the C and N Kα lines extracted from the 

spectra can be inaccurate because of the poor background simulation at low energies, presence of 

the carbon support film underneath the particle, and possible enhancement in the absorption effects 

[21], C and N were not included in the quantification. We use the weight ratios of Zn and Co to 

the total weight of Zn and Co [Zn/ (Zn + Co) and Co/ (Zn +Co)] to indicate the quantities of Zn 

and Co, respectively. The HEBT quantification factors for Co and Zn are 𝑧𝐶𝑜 = 9.49 × 10
4 𝑏 ∙

𝑚𝑜𝑙/𝑔 and 𝑧𝑍𝑛 = 9.96 × 10
4 𝑏 ∙ 𝑚𝑜𝑙/𝑔. And the EDS-STEM quantification factors are 𝑓𝐶𝑜 =

2.25 𝑏 ∙ 𝑚𝑜𝑙/𝑔  and 𝑓𝑍𝑛 = 1.84 𝑏 ∙ 𝑚𝑜𝑙/𝑔 . According to the definitions of the partial cross-

section 𝜎𝑝𝑎𝑟
𝐴  and the EDS quantification factor 𝑓𝐴, we have 𝜎𝑝𝑎𝑟

𝐶𝑜 𝜎𝑝𝑎𝑟
𝑍𝑛⁄ = (𝑓𝐶𝑜 ∙ 𝑀𝐶𝑜) (𝑓𝑍𝑛 ∙ 𝑀𝑍𝑛)⁄ . 

In comparison to the partial cross-section ratio of 𝜎𝑝𝑎𝑟
𝐶𝑜 𝜎𝑝𝑎𝑟

𝑍𝑛⁄ = 1.08, determined experimentally 

by Collins et al. [21], our calculation obtains a close value of (𝑓𝐶𝑜 ∙ 𝑀𝐶𝑜) (𝑓𝑍𝑛 ∙ 𝑀𝑍𝑛)⁄ , 1.10, which 

indicates the reliability of our model.  
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Figure 16 presents the absolute weight fraction of Co and Zn for three slices using the two 

different reconstruction techniques. Similar features as observed in Figure 15 are shown in Figure 

16, that high Co concentration is found in the upper-left region, and high Zn concentration in the 

bottom-right region. Even though the same threshold determination method was used, the HEBT 

reconstruction shows smoother boundaries and a more similar shape to the reconstructed images 

before quantification as observed in Figure 15 than the EDS-STEM tomographic reconstruction. 

Again, small discrepancies in the shape might result from the misalignment between the ADF 

images and EDS maps.  

 

Figure 16 Weight fraction maps of Co and Zn [Co/(Co + Zn) and Zn/(Co + Zn)] using the EDS-STEM tomographic and HEBT 

reconstruction for slice no. 70, 130, and 190 (cross-section view on the xz plane). 

 

Figure 17 presents a 3D volume rendering of the flux melted particle obtained using the 

quantification of the HEBT reconstruction, which provides a complete view to observe the 3D 

morphology and diffusion of the Co-rich domain (red) and Zn-rich domain (blue) in the particle. 
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Figure 17 3D volume rendering of the flux melted particle using the HEBT reconstruction. Red represents Co, and blue 

represents Zn. 

4. Conclusion  

We have proposed a new quantification approach combining the physical parameters acquired 

from MC X-ray with tomographic reconstruction to characterize 3D elemental distribution of 

nanostructures quantitatively. Two types of tomographic reconstruction were investigated using 

the simultaneous iterative reconstruction technique (SIRT): the traditional EDS-STEM 

tomographic reconstruction and HAADF-EDS bimodal tomographic (HEBT) reconstruction. The 

two types of reconstruction technique and the corresponding quantification approaches were 

applied to a simulated dataset of a 2D phantom sample of a Ag-Au nanoparticle and an 

experimental dataset of a particle of flux melted metal-organic framework glass.  

Using the simulated dataset of a 2D phantom sample (a single slice), the effects of the 

reconstruction parameters were investigated through two type of image quality metrics: SSIM and 

MSE. For both EDS-STEM tomography and HEBT, the quality of the reconstructed image is 

initially improved as a function of the number of iterations, before falling off at higher values due 

to the over-fitting problem. A similar trend was observed for α, the weight of the HAADF signal, 

in the HEBT reconstruction. Moreover, as α increases, the approximately optimal value for the 

number of iterations increases since the optimization becomes less efficient as α increases. In 

general, with appropriate reconstruction parameters, HEBT shows a better contrast and a reduced 
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noise level compared with EDS-STEM tomography. The quantified elemental maps obtained from 

the HEBT reconstruction also present a better similarity and lower errors in comparison to the 

reference images when compared to that from the EDS-STEM tomographic reconstruction.  

The quantification approaches of both reconstruction techniques were successfully applied to 

an experimental dataset of a particle of flux melted metal-organic framework glass, displaying the 

quantified 3D elemental distribution of Co and Zn. The diffusion of the Co-rich domain and Zn-

rich domain into each other was shown. The EDS-STEM tomography quantification factors 

calculated using our approach have shown a good consistency with the experimentally measured 

partial cross-sections from the reference.  

We have shown the feasibility of our quantification approaches for EDS-STEM tomography 

and HEBT applied to experimental datasets. Using SIRT, both EDS-STEM tomography and 

HEBT have revealed physically meaningful results. Although requiring an optimal alignment of 

ADF and EDS maps in conventional multi-frame acquisitions, HEBT has shown advantages in 

image contrast, boundary determination, and noise reduction compared with EDS-STEM 

tomography. The HEBT technique will play an important role in the characterization of beam-

sensitive samples for which the EDS maps are quite noisy and in reducing experimental acquisition 

time. In the future, the method to better align the ADF and EDS maps will be explored. And the 

integration of other advanced tomography algorithms as a replacement of SIRT will be 

implemented to improve the reconstructed images. 
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