000887744 001__ 887744
000887744 005__ 20220930130257.0
000887744 0247_ $$2doi$$a10.3390/su12229385
000887744 0247_ $$2Handle$$a2128/26225
000887744 0247_ $$2altmetric$$aaltmetric:94093139
000887744 0247_ $$2WOS$$aWOS:000594627500001
000887744 037__ $$aFZJ-2020-04401
000887744 082__ $$a690
000887744 1001_ $$0P:(DE-Juel1)173880$$aXu, Qiancheng$$b0$$eCorresponding author$$ufzj
000887744 245__ $$aOn the Effectiveness of the Measures in Supermarkets for Reducing Contact among Customers during COVID-19 Period
000887744 260__ $$aBasel$$bMDPI$$c2020
000887744 3367_ $$2DRIVER$$aarticle
000887744 3367_ $$2DataCite$$aOutput Types/Journal article
000887744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605795205_4356
000887744 3367_ $$2BibTeX$$aARTICLE
000887744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887744 3367_ $$00$$2EndNote$$aJournal Article
000887744 520__ $$aThe spread of the COVID-19 virus had a huge impact on human life on the global scale.Many control measures devoted to decrease contact among people have been adopted to slow down the transmission of the disease.A series of measures have been taken in supermarkets, which include restricting the number of customers, keeping social distance, and entering with a shopping cart.In this work, we investigate with numerical simulations the effectiveness of these measures in reducing the contact among customers.Several scenarios with different control measures are designed for numerical analysis.The movements of customers in a supermarket are simulated by a microscopic model for pedestrian dynamics.Moreover, an index based on the distance between customers is defined to measure the degree of contact and therefore evaluate it quantitatively.The effect of these measures on the average contact degree of each customer is explored, and the spatial distribution of the contact among customers in the supermarket is shown in a qualitative way.Simulation results show that except shopping cart measure, the other two measures are effective in reducing contact among customers.
000887744 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000887744 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1$$ufzj
000887744 773__ $$0PERI:(DE-600)2518383-7$$a10.3390/su12229385$$n22$$p9385$$tSustainability$$v12$$x2071-1050$$y2020
000887744 8564_ $$uhttps://juser.fz-juelich.de/record/887744/files/Invoice_MDPI_sustainability-920994_1417.58EUR.pdf
000887744 8564_ $$uhttps://juser.fz-juelich.de/record/887744/files/sustainability-12-09385.pdf$$yOpenAccess
000887744 8767_ $$8920994$$92020-11-09$$d2020-11-13$$eAPC$$jZahlung erfolgt$$psustainability-920994$$zBelegnr. 1200159501, war FZJ-2020-04342
000887744 909CO $$ooai:juser.fz-juelich.de:887744$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000887744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173880$$aForschungszentrum Jülich$$b0$$kFZJ
000887744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b1$$kFZJ
000887744 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000887744 9141_ $$y2020
000887744 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2020-09-03
000887744 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887744 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAINABILITY-BASEL : 2018$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887744 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000887744 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000887744 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000887744 980__ $$ajournal
000887744 980__ $$aVDB
000887744 980__ $$aUNRESTRICTED
000887744 980__ $$aI:(DE-Juel1)IAS-7-20180321
000887744 980__ $$aAPC
000887744 9801_ $$aAPC
000887744 9801_ $$aFullTexts