001     887745
005     20230310131341.0
024 7 _ |a 10.1103/PhysRevApplied.14.054019
|2 doi
024 7 _ |a 2128/26136
|2 Handle
024 7 _ |a WOS:000587961000002
|2 WOS
037 _ _ |a FZJ-2020-04402
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Zellekens, Patrick
|0 P:(DE-Juel1)145960
|b 0
|e Corresponding author
245 _ _ |a Hard-Gap Spectroscopy in a Self-Defined Mesoscopic InAs/Al Nanowire Josephson Junction
260 _ _ |a College Park, Md. [u.a.]
|c 2020
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605274637_16533
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superconductor-semiconductor-nanowire hybrid structures can serve as versatile building blocks to realize Majorana circuits or superconducting qubits based on quantized levels such as Andreev qubits. For all these applications, it is essential that the superconductor-semiconductor interface is as clean as possible. Furthermore, the shape and dimensions of the superconducting electrodes need to be precisely controlled. We fabricated self-defined InAs/Al core-shell nanowire junctions by a fully in-situ approach, which meet all these criteria. Transmission electron microscopy measurements confirm the sharp and clean interface between the nanowire and the in-situ deposited Al electrodes that are formed by means of shadow evaporation. Furthermore, we report on tunnel spectroscopy, gate, and magnetic field-dependent transport measurements. The achievable short junction lengths, the observed hard gap, and the magnetic field robustness make this hybrid structure very attractive for applications that rely on a precise control of the number of subgap states, like Andreev qubits or topological systems.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|x 0
|f POF III
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
700 1 _ |a Deacon, Russell
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Perla, Pujitha
|0 P:(DE-Juel1)169951
|b 2
700 1 _ |a Fonseka, H. Aruni
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mörstedt, Timm
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hindmarsh, Steven A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bennemann, Benjamin
|0 P:(DE-Juel1)161192
|b 6
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 7
700 1 _ |a Lepsa, Mihail I.
|0 P:(DE-Juel1)128603
|b 8
700 1 _ |a Sanchez, Ana M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 10
700 1 _ |a Ishibashi, Koji
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 12
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.14.054019
|0 PERI:(DE-600)2760310-6
|n 5
|p 054019
|t Physical review applied
|v 14
|y 2020
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/887745/files/PhysRevApplied.14.054019.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887745
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145960
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161192
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128603
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2018
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)HNF-20170116
|k HNF
|l Helmholtz - Nanofacility
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)HNF-20170116
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21