001     887773
005     20210130010634.0
024 7 _ |a 10.3390/rs12223690
|2 doi
024 7 _ |a 2128/26129
|2 Handle
024 7 _ |a altmetric:94102088
|2 altmetric
024 7 _ |a WOS:000594601500001
|2 WOS
037 _ _ |a FZJ-2020-04410
082 _ _ |a 620
100 1 _ |a Lausch, Angela
|0 0000-0002-4490-7232
|b 0
|e Corresponding author
245 _ _ |a Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605197745_18879
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schaepman, Michael E.
|0 0000-0002-9627-9565
|b 1
700 1 _ |a Skidmore, Andrew K.
|0 0000-0002-7446-8429
|b 2
700 1 _ |a Truckenbrodt, Sina C.
|0 0000-0002-6016-3747
|b 3
700 1 _ |a Hacker, Jörg M.
|0 0000-0002-3458-3465
|b 4
700 1 _ |a Baade, Jussi
|0 0000-0001-9878-7232
|b 5
700 1 _ |a Bannehr, Lutz
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Borg, Erik
|0 0000-0001-8288-8426
|b 7
700 1 _ |a Bumberger, Jan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dietrich, Peter
|0 0000-0003-2699-2354
|b 9
700 1 _ |a Gläßer, Cornelia
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Haase, Dagmar
|0 0000-0003-4065-5194
|b 11
700 1 _ |a Heurich, Marco
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Jagdhuber, Thomas
|0 0000-0002-1760-2425
|b 13
700 1 _ |a Jany, Sven
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Krönert, Rudolf
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Möller, Markus
|0 0000-0002-1918-7747
|b 16
700 1 _ |a Mollenhauer, Hannes
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 18
700 1 _ |a Pause, Marion
|0 0000-0002-3836-2723
|b 19
700 1 _ |a Rogass, Christian
|0 0000-0002-7855-7971
|b 20
700 1 _ |a Salepci, Nesrin
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Schmullius, Christiane
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Schrodt, Franziska
|0 0000-0001-9053-8872
|b 23
700 1 _ |a Schütze, Claudia
|0 0000-0003-0064-8133
|b 24
700 1 _ |a Schweitzer, Christian
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Selsam, Peter
|0 0000-0001-6122-7880
|b 26
700 1 _ |a Spengler, Daniel
|0 0000-0003-2939-8764
|b 27
700 1 _ |a Vohland, Michael
|0 0000-0002-6048-1163
|b 28
700 1 _ |a Volk, Martin
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Weber, Ute
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Wellmann, Thilo
|0 0000-0002-6852-5095
|b 31
700 1 _ |a Werban, Ulrike
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Zacharias, Steffen
|0 0000-0002-7825-0072
|b 33
700 1 _ |a Thiel, Christian
|0 0000-0001-5144-8145
|b 34
773 _ _ |a 10.3390/rs12223690
|0 PERI:(DE-600)2513863-7
|n 22
|p 3690
|t Remote sensing
|v 12
|y 2020
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/887773/files/2020_Lausch_GeodiversityII.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887773
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)129506
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2018
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21