000887775 001__ 887775
000887775 005__ 20210130010635.0
000887775 0247_ $$2doi$$a10.1021/acs.jpclett.9b03252
000887775 0247_ $$2Handle$$a2128/26451
000887775 0247_ $$2altmetric$$aaltmetric:73705210
000887775 0247_ $$2pmid$$apmid:31880458
000887775 0247_ $$2WOS$$aWOS:000508473400022
000887775 037__ $$aFZJ-2020-04412
000887775 082__ $$a530
000887775 1001_ $$0P:(DE-HGF)0$$aShibazaki, Chie$$b0
000887775 245__ $$aDirect Observation of the Protonation States in the Mutant Green Fluorescent Protein
000887775 260__ $$aWashington, DC$$bACS$$c2020
000887775 3367_ $$2DRIVER$$aarticle
000887775 3367_ $$2DataCite$$aOutput Types/Journal article
000887775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607523754_30926
000887775 3367_ $$2BibTeX$$aARTICLE
000887775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887775 3367_ $$00$$2EndNote$$aJournal Article
000887775 520__ $$aNeutron crystallography has been used to elucidate the protonationstates for the enhanced green fluorescent protein, which has revolutionized imagingtechnologies. The structure has a deprotonated hydroxyl group in the fluorescentchromophore. Also, the protonation states of His148 and Thr203, as well as theorientation of a critical water molecule in direct contact with the chromophore, couldbe determined. The results demonstrate that the deprotonated hydroxyl group in thechromophore and the nitrogen atom ND1 in His148 are charged negatively andpositively, respectively, forming an ion pair. The position of the two deuterium atomsin the critical water molecule appears to be displaced slightly toward the acceptoroxygen atoms according to their omit maps. This displacement implies the formationof an intriguing electrostatic potential realized inside of the protein. Our findingsprovide new insights into future protein design strategies along with developments inquantum chemical calculations.
000887775 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000887775 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000887775 588__ $$aDataset connected to CrossRef
000887775 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000887775 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000887775 693__ $$0EXP:(DE-MLZ)BIODIFF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)BIODIFF-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eBIODIFF: Diffractometer for large unit cells$$fNL1$$x0
000887775 7001_ $$0P:(DE-HGF)0$$aShimizu, Rumi$$b1
000887775 7001_ $$0P:(DE-HGF)0$$aKagotani, Yuji$$b2
000887775 7001_ $$00000-0002-1477-5590$$aOstermann, Andreas$$b3
000887775 7001_ $$0P:(DE-Juel1)138266$$aSchrader, Tobias E.$$b4
000887775 7001_ $$00000-0003-2353-880X$$aAdachi, Motoyasu$$b5$$eCorresponding author
000887775 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.9b03252$$p492-496$$tThe journal of physical chemistry letters$$v11$$x1948-7185$$y2020
000887775 8564_ $$uhttps://juser.fz-juelich.de/record/887775/files/acs.jpclett.9b03252.pdf
000887775 8564_ $$uhttps://juser.fz-juelich.de/record/887775/files/schrader_acs.jpclett.9b03252.pdf$$yPublished on 2019-12-27. Available in OpenAccess from 2020-12-27.
000887775 909CO $$ooai:juser.fz-juelich.de:887775$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000887775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138266$$aForschungszentrum Jülich$$b4$$kFZJ
000887775 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000887775 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000887775 9141_ $$y2020
000887775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2018$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2018$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000887775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000887775 920__ $$lyes
000887775 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000887775 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000887775 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000887775 980__ $$ajournal
000887775 980__ $$aVDB
000887775 980__ $$aUNRESTRICTED
000887775 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000887775 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000887775 980__ $$aI:(DE-588b)4597118-3
000887775 9801_ $$aFullTexts