000887782 001__ 887782
000887782 005__ 20240711092246.0
000887782 0247_ $$2doi$$a10.1149/1945-7111/ab7d2e
000887782 0247_ $$2Handle$$a2128/26204
000887782 0247_ $$2WOS$$aWOS:000521492700001
000887782 037__ $$aFZJ-2020-04419
000887782 041__ $$aEnglish
000887782 082__ $$a660
000887782 1001_ $$0P:(DE-Juel1)170032$$aVayyala, Ashok$$b0$$ufzj
000887782 245__ $$aA Nanoscale Study of Thermally Grown Chromia on High-Cr Ferritic Steels and Associated Oxidation Mechanisms
000887782 260__ $$aBristol$$bIOP Publishing$$c2020
000887782 3367_ $$2DRIVER$$aarticle
000887782 3367_ $$2DataCite$$aOutput Types/Journal article
000887782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605627328_27112
000887782 3367_ $$2BibTeX$$aARTICLE
000887782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887782 3367_ $$00$$2EndNote$$aJournal Article
000887782 520__ $$aFe-22Cr-0.5Mn based ferritic steels are used as interconnect materials for solid oxide fuel/electrolysis cells. Four steel samples, including the commercial steel Crofer 22 H, were oxidized at 800 °C in a model Ar-4%H2-4%H2O atmosphere simulating the fuel side of the cells and investigated by atom probe tomography (APT) in conjunction with electron microscopy and thermogravimetry. All steels form an oxide scale mainly consisting of MnCr2O4 spinel on top of Cr2O3. APT revealed segregation of minor alloying constituents (Nb and Ti) to chromia grain boundaries and highlighted their effect on mass transport through the chromia scale. Relationships between segregation activity of individual elements (in terms of Gibbsian interfacial excess), oxide scale microstructure and alloy oxidation rate have been established based on the APT results. Comparison of segregation activities revealed that vacancies formation due to Wagner-Hauffe doping with aliovalent Ti and Nb impurities cannot be solely responsible for faster oxidation, assuming alteration of the grain boundary structure and associated changes of their mass transport properties. Controlled Si addition to the alloy (about 0.4 at%) suppresses the detrimental effect of Nb on the oxidation resistance but results in formation of a thin, although still discontinuous, SiO2 layer at the metal-oxide interface. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
000887782 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000887782 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000887782 588__ $$aDataset connected to CrossRef
000887782 7001_ $$0P:(DE-Juel1)168558$$aPovstugar, Ivan$$b1$$eCorresponding author$$ufzj
000887782 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, Dmitry$$b2$$ufzj
000887782 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b3$$ufzj
000887782 7001_ $$0P:(DE-HGF)0$$aHattendorf, Heike$$b4
000887782 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b5$$ufzj
000887782 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ab7d2e$$n6$$p061502$$tJournal of the Electrochemical Society$$v167$$x0013-4651$$y2020
000887782 8564_ $$uhttps://juser.fz-juelich.de/record/887782/files/Vayyala_2020_J._Electrochem._Soc._167_061502.pdf$$yOpenAccess
000887782 909CO $$ooai:juser.fz-juelich.de:887782$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170032$$aForschungszentrum Jülich$$b0$$kFZJ
000887782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168558$$aForschungszentrum Jülich$$b1$$kFZJ
000887782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b2$$kFZJ
000887782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b3$$kFZJ
000887782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b5$$kFZJ
000887782 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000887782 9141_ $$y2020
000887782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-05
000887782 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887782 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2018$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000887782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000887782 920__ $$lyes
000887782 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000887782 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000887782 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000887782 9801_ $$aFullTexts
000887782 980__ $$ajournal
000887782 980__ $$aVDB
000887782 980__ $$aUNRESTRICTED
000887782 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000887782 980__ $$aI:(DE-Juel1)IEK-2-20101013
000887782 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000887782 981__ $$aI:(DE-Juel1)IMD-1-20101013