000887788 001__ 887788
000887788 005__ 20230310131342.0
000887788 0247_ $$2doi$$a10.1063/5.0020986
000887788 0247_ $$2ISSN$$a0021-9606
000887788 0247_ $$2ISSN$$a1089-7690
000887788 0247_ $$2ISSN$$a1520-9032
000887788 0247_ $$2Handle$$a2128/26329
000887788 0247_ $$2pmid$$a33261472
000887788 0247_ $$2WOS$$aWOS:000596592100001
000887788 037__ $$aFZJ-2020-04423
000887788 082__ $$a530
000887788 1001_ $$0P:(DE-Juel1)173831$$aPark, Gun Woo$$b0$$eCorresponding author
000887788 245__ $$aModeling cross-flow ultrafiltration of permeable particle dispersions
000887788 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2020
000887788 3367_ $$2DRIVER$$aarticle
000887788 3367_ $$2DataCite$$aOutput Types/Journal article
000887788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607525733_13191
000887788 3367_ $$2BibTeX$$aARTICLE
000887788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887788 3367_ $$00$$2EndNote$$aJournal Article
000887788 520__ $$aCross-flow ultrafiltration is a pressure-driven separation and enrichment process of small colloidal particles where a colloidal feed dispersion is continuously pumped through a membrane pipe permeable to the solvent only. We present a semi-analytic modified boundary layer approximation (mBLA) method for calculating the inhomogeneous concentration-polarization (CP) layer of particles near the membrane and the dispersion flow in a cross-flow filtration setup with a hollow fiber membrane. Conditions are established for which unwarranted axial flow and permeate flow reversal are excluded, and non-monotonic CP profiles are observed. The permeate flux is linked to the particle concentration on the membrane wall using the Darcy–Starling expression invoking axially varying osmotic and trans-membrane pressures. Results are discussed for dispersions of hard spheres serving as a reference system and for solvent-permeable particles mimicking non-ionic microgels. Accurate analytic expressions are employed for the concentration and solvent permeability dependent dispersion viscosity and gradient diffusion coefficient entering into the effective Stokes flow and advection–diffusion equations. We show that the mBLA concentration and flow profiles are in quantitative agreement with results by a finite element method. The mBLA results are compared with predictions by an earlier CP layer similarity solution, showing the higher precision of the former method.
000887788 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000887788 536__ $$0G:(GEPRIS)221475706$$aSFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706)$$c221475706$$x1
000887788 588__ $$aDataset connected to CrossRef
000887788 7001_ $$0P:(DE-Juel1)130858$$aNägele, Gerhard$$b1
000887788 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0020986$$gVol. 153, no. 20, p. 204110 -$$n20$$p204110 -$$tThe journal of chemical physics$$v153$$x0021-9606$$y2020
000887788 8564_ $$uhttps://juser.fz-juelich.de/record/887788/files/JCP20-AR-02615_00249.pdf
000887788 8564_ $$uhttps://juser.fz-juelich.de/record/887788/files/5.0020986.pdf$$yOpenAccess
000887788 8767_ $$8JCP20-AR-02615_00249$$92020-11-06$$d2020-11-17$$eHybrid-OA$$jZahlung erfolgt$$zUSD 3500 / Belegnr. 1200159684
000887788 909CO $$ooai:juser.fz-juelich.de:887788$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000887788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173831$$aForschungszentrum Jülich$$b0$$kFZJ
000887788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b1$$kFZJ
000887788 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000887788 9141_ $$y2020
000887788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000887788 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887788 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887788 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000887788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000887788 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000887788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000887788 920__ $$lyes
000887788 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000887788 980__ $$ajournal
000887788 980__ $$aVDB
000887788 980__ $$aI:(DE-Juel1)IBI-4-20200312
000887788 980__ $$aAPC
000887788 980__ $$aUNRESTRICTED
000887788 9801_ $$aAPC
000887788 9801_ $$aFullTexts