| Hauptseite > Publikationsdatenbank > Modeling cross-flow ultrafiltration of permeable particle dispersions > print |
| 001 | 887788 | ||
| 005 | 20230310131342.0 | ||
| 024 | 7 | _ | |a 10.1063/5.0020986 |2 doi |
| 024 | 7 | _ | |a 0021-9606 |2 ISSN |
| 024 | 7 | _ | |a 1089-7690 |2 ISSN |
| 024 | 7 | _ | |a 1520-9032 |2 ISSN |
| 024 | 7 | _ | |a 2128/26329 |2 Handle |
| 024 | 7 | _ | |a 33261472 |2 pmid |
| 024 | 7 | _ | |a WOS:000596592100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-04423 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Park, Gun Woo |0 P:(DE-Juel1)173831 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Modeling cross-flow ultrafiltration of permeable particle dispersions |
| 260 | _ | _ | |a Melville, NY |c 2020 |b American Institute of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607525733_13191 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Cross-flow ultrafiltration is a pressure-driven separation and enrichment process of small colloidal particles where a colloidal feed dispersion is continuously pumped through a membrane pipe permeable to the solvent only. We present a semi-analytic modified boundary layer approximation (mBLA) method for calculating the inhomogeneous concentration-polarization (CP) layer of particles near the membrane and the dispersion flow in a cross-flow filtration setup with a hollow fiber membrane. Conditions are established for which unwarranted axial flow and permeate flow reversal are excluded, and non-monotonic CP profiles are observed. The permeate flux is linked to the particle concentration on the membrane wall using the Darcy–Starling expression invoking axially varying osmotic and trans-membrane pressures. Results are discussed for dispersions of hard spheres serving as a reference system and for solvent-permeable particles mimicking non-ionic microgels. Accurate analytic expressions are employed for the concentration and solvent permeability dependent dispersion viscosity and gradient diffusion coefficient entering into the effective Stokes flow and advection–diffusion equations. We show that the mBLA concentration and flow profiles are in quantitative agreement with results by a finite element method. The mBLA results are compared with predictions by an earlier CP layer similarity solution, showing the higher precision of the former method. |
| 536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |x 0 |f POF III |
| 536 | _ | _ | |a SFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706) |0 G:(GEPRIS)221475706 |c 221475706 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Nägele, Gerhard |0 P:(DE-Juel1)130858 |b 1 |
| 773 | _ | _ | |a 10.1063/5.0020986 |g Vol. 153, no. 20, p. 204110 - |0 PERI:(DE-600)1473050-9 |n 20 |p 204110 - |t The journal of chemical physics |v 153 |y 2020 |x 0021-9606 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/887788/files/JCP20-AR-02615_00249.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/887788/files/5.0020986.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:887788 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173831 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130858 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-05 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-05 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2018 |d 2020-09-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-05 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-05 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-05 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-09-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-09-05 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-05 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-4-20200312 |k IBI-4 |l Biomakromolekulare Systeme und Prozesse |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-4-20200312 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|