
J. Chem. Phys. 153, 204110 (2020); https://doi.org/10.1063/5.0020986 153, 204110

© 2020 Author(s).

Modeling cross-flow ultrafiltration of
permeable particle dispersions
Cite as: J. Chem. Phys. 153, 204110 (2020); https://doi.org/10.1063/5.0020986
Submitted: 06 July 2020 . Accepted: 06 November 2020 . Published Online: 30 November 2020

 Gun Woo Park, and  Gerhard Nägele

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519992853&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a6e1cecbc242d3b912549e1a9893d52b6202f329&location=
https://doi.org/10.1063/5.0020986
https://doi.org/10.1063/5.0020986
http://orcid.org/0000-0003-4772-1027
https://aip.scitation.org/author/Park%2C+Gun+Woo
http://orcid.org/0000-0001-6093-388X
https://aip.scitation.org/author/N%C3%A4gele%2C+Gerhard
https://doi.org/10.1063/5.0020986
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0020986
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0020986&domain=aip.scitation.org&date_stamp=2020-11-30


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Modeling cross-flow ultrafiltration of permeable
particle dispersions

Cite as: J. Chem. Phys. 153, 204110 (2020); doi: 10.1063/5.0020986
Submitted: 6 July 2020 • Accepted: 6 November 2020 •
Published Online: 30 November 2020

Gun Woo Parka) and Gerhard Nägeleb)

AFFILIATIONS
Institute of Biological Information Processing, IBI-4, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

a)Author to whom correspondence should be addressed: g.park@fz-juelich.de
b)Electronic mail: g.naegele@fz-juelich.de

ABSTRACT
Cross-flow ultrafiltration is a pressure-driven separation and enrichment process of small colloidal particles where a colloidal feed dis-
persion is continuously pumped through a membrane pipe permeable to the solvent only. We present a semi-analytic modified bound-
ary layer approximation (mBLA) method for calculating the inhomogeneous concentration-polarization (CP) layer of particles near the
membrane and the dispersion flow in a cross-flow filtration setup with a hollow fiber membrane. Conditions are established for which
unwarranted axial flow and permeate flow reversal are excluded, and non-monotonic CP profiles are observed. The permeate flux is
linked to the particle concentration on the membrane wall using the Darcy–Starling expression invoking axially varying osmotic and
trans-membrane pressures. Results are discussed for dispersions of hard spheres serving as a reference system and for solvent-permeable
particles mimicking non-ionic microgels. Accurate analytic expressions are employed for the concentration and solvent permeability
dependent dispersion viscosity and gradient diffusion coefficient entering into the effective Stokes flow and advection–diffusion equa-
tions. We show that the mBLA concentration and flow profiles are in quantitative agreement with results by a finite element method.
The mBLA results are compared with predictions by an earlier CP layer similarity solution, showing the higher precision of the former
method.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020986., s

I. INTRODUCTION

Membrane ultrafiltration (UF) is a pressure-driven process for
the concentration and purification of dispersions of (colloidal) par-
ticles undergoing strong Brownian motion, having the major advan-
tage of low energy consumption. It is extensively used for water
purification, protein enrichment, blood treatment by (artificial) kid-
neys, and the reuse of oil droplets.1–3

Different from nanofiltration where the mean pore size
of the membrane is an order-of-magnitude smaller than that
in UF, the retained larger particles in UF are dispersed but
not dissolved in the low-molecular-weight solvent. In both UF
and nanofiltration, Brownian motion and the associated trans-
membrane osmotic pressure are important effects. UF needs to
be distinguished further from the so-called microfiltration of
larger, micrometer-sized particles where Brownian motion and

osmotic pressure effects are negligible, but out-of-equilibrium
hydrodynamic effects such as shear-induced diffusion come into
play.2,4,5

A standard way of operating UF is the inside-out cross-flow
mode, where a feed dispersion is pumped steadily through a bun-
dle of (typically cylindrical) hollow fiber membranes with inlet and
outlet ports (cf. Fig. 1). The particle-enriched dispersion is col-
lected at the outlet port. Ideally, the fiber membrane is only solvent-
permeable. Its material properties (e.g., mean pore size, thickness,
and stiffness) and its geometrical properties (e.g., inner radius R
and length L of the cylinder) are selected depending on the solute,
solvent, and operating conditions. Owing to the applied trans-
membrane pressure (TMP), a small fraction of the in-flowing sol-
vent permeates the membrane from the lumen side to the out-
side of the fiber into the permeate bath. Given an ideally particle-
retentive membrane, the particles are thereby retained inside the
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FIG. 1. Schematics of cross-flow, inside-
out filtration in a cylindrical membrane
pipe of length L and inner radius R. The
thickness of the CP layer (in gray) is
exaggerated for improved visibility and
likewise the distortion (dashed curve) of
the pure-solvent parabolic axial velocity
profile caused by the CP layer.

fiber. Consequently, a non-homogeneous particle-enriched diffuse
layer is formed near the inner membrane wall, which, in general,
becomes more pronounced with increasing axial distance from the
fiber inlet. This so-called concentration-polarization (CP) layer is
determined by the balance of gradient diffusion away and flow con-
vection toward the wall. The increased viscosity in the CP layer
slows down the dispersion flow, which further enhances polariza-
tion. A consequential osmotic pressure buildup in the CP layer
counteracts the TMP, causing a reduced inside-out permeate flux
of the solvent associated with a lowered filtration efficiency. It
is, therefore, important to minimize concentration polarization in
order to maintain a significant permeate flux. In a filtration exper-
iment, the CP layer contributes to a less than a linear increase
in the mean permeate flux with increasing values of the mean
TMP.

To quantify CP layer effects in cross-flow UF, it is useful
as a reference to analyze first the cross-flow of pure solvent in a
porous tube without dispersed particles. In UF systems, the radial
fluid velocity inside the lumen region is commonly small com-
pared to the axial velocity, while the axial variations of veloc-
ity fields are small compared to the radial ones. One can simul-
taneously consider the combined pure-solvent flow inside the
lumen, membrane, and permeate (extracapillary) parts of the UF
setup, as done in calculations in Refs. 5–7 for stationary, lami-
nar, and incompressible flow conditions, by combining the Stokes
and Darcy equations outside and inside the membrane, respec-
tively. The flows are coupled at the cylindrical membrane–fluid
interfaces on assuming the zero tangential velocity boundary con-
dition, which is reasonable since the hydraulic membrane resis-
tance is high. This gives rise to a pressure inside the lumen and
a TMP across the membrane, which both decrease with a hyper-
bolic functional dependence for increasing axial distance from the
inlet.6

Instead of considering explicitly the intra-membrane and per-
meate flow parts, it is expedient to simply couple the searched-for
interior lumen flow to the outside using an appropriate membrane
law at the inner membrane surface. Original work along these lines
was done by Berman,8 who calculated the flow profile in a rect-
angular pipe, followed by the work of Yuan and Finkelstein9 for
a cylindrical pipe. They assumed a pressure-independent constant

radial suction velocity at the inner membrane surface, giving rise
to a lumen pressure profile decreasing quadratically in the axial
direction. This physically unreasonable membrane law was later
replaced by the Darcy–Starling equation, linearly relating the local
radial suction (permeate) velocity to the local TMP, in accord with
the observation that the pressure gradient inside the membrane
is dominated by the TMP.10 Using the Darcy–Starling equation,
a hyperbolic form of the axial pressure drop inside the lumen is
recovered.10–13

When a dispersion is filtrated under UF conditions, the devel-
opment of the CP layer at the inner membrane surface changes the
permeate flux and the (dispersion) flow profile in comparison to
those of the pure solvent. The mean thickness of the CP layer is,
in general, small compared with the inner radius R of the mem-
brane fiber. Therefore, a boundary layer analysis is commonly used
in CP layer modeling. A boundary layer analysis for a steady-state
CP layer invokes a one-dimensional balance of the radial convection
current toward and the radial gradient (collective) diffusion cur-
rent of particles away from the inner membrane wall.14 The axial
convection of particles is hereby accounted for only indirectly via
a mass transfer coefficient.14,15 In quantifying the overall intensity
of the CP layer, the excess particle flux is commonly determined in
this matched asymptotic analysis4,6,16 by invoking the global con-
servation of particles inside the lumen for a fully particle-retentive
membrane.

A few remarks are in order here regarding earlier theoret-
ical works on CP layers, described based on a boundary layer
analysis. Within a one-dimensional radial boundary layer analy-
sis, axial convection can be accounted for globally using the con-
stancy of the cross-sectionally integrated particle flux17–19 for known
flow and concentration profiles in the lumen. This constancy is
due to the conservation of particles inside the lumen for a fully
particle retentive membrane. Denisov,19 in particular, has pre-
sented a detailed matched asymptotic expansion in inverse pow-
ers of a radial Péclet number by using, for simplicity, constant
values for the gradient diffusion coefficient and dispersion viscos-
ity, in conjunction with the linear van’t Hoff expression for the
osmotic pressure, which is valid for low particle concentrations only.
Similarly, the model proposed by Elimelech and co-workers17,18

also invokes global particle conservation and the constancy of the
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gradient diffusion coefficient and viscosity. In addition, a parabolic
profile is assumed in their model for the longitudinal dispersion
velocity.

In a different steady-state boundary layer analysis where the
advection–diffusion balance equation in the CP layer includes both
axial and radial particle convection, a similarity solution for the CP
concentration profile was obtained.16,20–23 On the basis of this simi-
larity solution, the CP layer and permeate flux profiles in cross-flow
UF were calculated in two studies by Roa et al.23,24 for dispersions
of charge-stabilized particles and for a model of solvent-permeable
particles mimicking non-ionic microgels, respectively. In these stud-
ies, accurate analytic expressions were used for the concentration-
dependent gradient diffusion coefficient, dispersion viscosity, and
osmotic pressure.

In this work, we present a modified boundary layer analy-
sis method, referred to as the mBLA method, and an associated
finite element method (FEM) of calculating the CP layer and flow
profiles for cross-flow UF of dispersions of non-permeable and
solvent permeable particles inside a hollow fiber membrane. The
mBLA and FEM calculations are based on the effective Stokes
equation for dispersion flow, the advection–diffusion equation,
and the Darcy–Starling equation accounting for the dispersion
osmotic pressure, with the concentration and solvent-permeability
dependencies of the involved transport coefficients included. Using
a leading-order regular perturbation expansion, we discuss first
analytic expressions for the pressure and velocity profiles in the
pure solvent case. This allows for determining the range of UF
operating conditions for which unwarranted effects such as axial
flow exhaustion (AFE) and permeate flow reversal (PFR) are
avoided. In PFR, the trans-membrane flow changes along the fil-
ter pipe from suction to injection caused by a strong axial pressure
drop.

The pure-solvent result is used as the input to the outer dis-
persion flow solution in our ensuing leading-order matched asymp-
totic expansion boundary layer analysis of the CP layer in UF. To
elucidate the effects of the concentration and permeability depen-
dence of the transport coefficients on UF, we consider first a ref-
erence system with constant values of the dispersion viscosity and
collective diffusion coefficient, which allows for essentially analytic
treatment. While the same radial variation of the flow profile is
obtained as in the pure solvent case, the axial flow variation is dif-
ferent for a dispersion, owing to the coupling of the flow to the
CP concentration profile determining the osmotic pressure con-
tribution in the Darcy–Starling equation. In a dominant balance
analysis of axial–radial convection and radial diffusion contribu-
tions to the CP layer, three different cases must be distinguished
depending on the operation conditions. For the practically relevant
operating conditions considered in this work, the case of a one-
dimensional radial advection–diffusion balance is obtained in the
boundary layer with the according inner solution for concentration-
dependent dispersion properties. The inner solution is asymptoti-
cally matched to the outer solution in an open functional form. By
enforcing the conservation of particles inside the lumen volume, the
CP profile is finally determined using a fixed-point iteration (FPI)
scheme.

The only input parameters characterizing the dispersion
are the concentration-dependent gradient diffusion coefficient D,
dispersion viscosity η, and osmotic pressure Π. Explicit results

are discussed for model dispersions of impermeable and solvent-
permeable hard spheres (HS), for which in both cases, accu-
rate analytic expressions for the input quantities are provided.25

The excellent accuracy of our mBLA results for the CP layer
concentration field and permeate flow is demonstrated by the
comparison with numerical results obtained by elaborate FEM
calculations. We further show that the mBLA results are in
distinctly better agreement with the FEM data than a similar-
ity solution prediction for the CP layer employed in an earlier
work.23

Fouling is not considered in the present work, which focuses on
generic CP layer effects in UF on both concentration and flow fields
and which involves a precise modeling of relevant transport prop-
erties. Fouling is an undesirable modification (e.g., hydraulic resis-
tance enlargement) of the membrane caused by specific physico–
chemical interactions between the membrane and particles, caus-
ing stagnant particle cake layer formation, adsorption of particles
at the membrane wall, and clogging of membrane pores by intrud-
ing particles. The operating conditions in this work are such that
reversible cake layer formation by particles becoming immobilized
due to crystallization or jamming is avoided.

This paper is organized as follows: In Sec. II, we describe
the macroscopic cross-flow UF model with its underlying trans-
port equations and boundary and operating conditions. The essen-
tials of our finite element (FEM) numerical scheme are given in
Appendix A. Analytic expressions for the transport properties of
solvent-permeable particles with hard-core interactions used as the
input to the mBLA and FEM calculations are discussed in Sec. III,
in conjunction with the associated Appendix B. Section IV includes
our perturbation analysis of the UF model. After introducing the
relevant base units and dimensionless quantities, in Sec. IV A, we
first describe the analytic regular perturbation expansion solution
for pure solvent flow. This is followed in Sec. IV B by explain-
ing our mBLA method for the concentration and flow profiles for
dispersions with concentration-dependent transport properties. We
account here for the axially varying osmotic pressure at the inner
membrane wall. The results, given in Sec. V, consist of three sub-
sections. In Sec. V A, we discuss velocity and pressure profiles for
pure solvent flow, and we analyze criteria for axial flow exhaus-
tion and permeate flow reversal. For a reference system of col-
loidal hard spheres, in Sec. V B, we compare the semi-analytic
mBLA results with the according FEM data showing quantitative
agreement. Furthermore, we compare with the concentration pro-
file results by a previous similarity solution for the CP layer.23 The
effect of the solvent permeability of particles on cross-flow UF is ana-
lyzed in Sec. V C. Our conclusions are presented in Sec. VI. Salient
details of the mBLA method are summarized in Appendixes C
and D.

II. CROSS-FLOW ULTRAFILTRATION MODEL
Consider with Fig. 1 a monodisperse feed dispersion of neu-

trally buoyant, rigid, and spherical Brownian particles of hard-core
radius a steadily pumped through a hollow cylindrical fiber mem-
brane of inner radius R ≫ a, length L, and radius-to-length aspect
ratio,

ϵ = R/L≪ 1. (1)
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On a coarse-grained length scale where the size a of dis-
persed particles and the morphology of the membrane chan-
nels are not resolved, the mass and momentum transport in
the dispersion undergoing UF are governed by macroscopic con-
tinuum mechanics equations. Mass balance, i.e., particle num-
ber conservation, is described by the continuity equation ∂ϕ/∂t
+ ∇ ⋅ J = 0, where ϕ(r, t) = (4πa3

/3)n(r, t) is the (dispersion-
averaged) local volume fraction of particles at position r and
time t. Moreover, n(r, t) is the associated local number den-
sity, and J(r, t) the local particle flux. Under UF conditions,
the flow is laminar and the dispersion of Brownian parti-
cles is only slightly driven out of equilibrium. Hence, J = Jd
+ Jad is the sum of a diffusion flux, Jd = −D(ϕ)∇ϕ, related to ther-
mal Brownian motion, whose strength at a local volume fraction ϕ is
quantified by the equilibrium gradient or (long-time) collective dif-
fusion coefficient D(ϕ), and an advection flux, Jad = ϕV, whereV(r, t)
is the local dispersion velocity. Substitution of the above expression
for J into the continuity equation leads to the advection–diffusion
equation,

∂ϕ
∂t

+ V ⋅ ∇ϕ = ∇ ⋅ (D(ϕ)∇ϕ), (2)

where, in addition, the incompressibility constraint,

∇ ⋅V = 0, (3)

for macroscopic dispersion flow was used.
Under low-Reynolds-number conditions met in UF, the

momentum balance for the dispersion-averaged, incompressible
laminar flow is described by the effective Stokes equation,

∇P = η(ϕ)ΔV +
dη
dϕ
∇ϕ ⋅ [∇V + (∇V)T

], (4)

invoking, in addition to V, the dispersion-averaged local pressure P
and the low-shear dispersion viscosity η(ϕ). Moreover, UF is per-
formed under low-shear conditions where non-Newtonian effects
are negligible. Hence, P(r) = pf (r)+Π(ϕ(r)) is the sum of the equi-
librium osmotic pressure, Π, due to the Brownian particles phase
and a fluid-phase pressure contribution, pf , adjusting itself such that
the incompressibility constraint in Eq. (3) is maintained.26 The effec-
tive Stokes equation includes a force density proportional to dη/dϕ,
which is non-zero in the inhomogeneous CP layer region. Since in
a colloidal dispersion solvent, vorticity diffusion is much faster than
particle diffusion, the steady-state dispersion flow described by the
linear Stokes equation is established much faster than the steady-
state CP layer profile ϕ(r). While we are concerned, in this paper,
with steady-state UF, in the FEM calculations, it is advantageous to
start from the advection–diffusion equation including the explicit
time derivative of ϕ (see below).

For cross-flow operating conditions compatible with the cylin-
drical geometry of the membrane fiber, there is axisymmetric dis-
persion flow without swirling, i.e.,

V(r) = v(r, z)r̂ + u(r, z)ẑ, (5)

with cylindrical coordinates (r, z) and radial and axial unit vectors r̂
and ẑ, respectively. Here, v(r, z) and u(r, z) are the radial and axial

velocity components, respectively. We use the operating (boundary)
conditions

ϕ(r, z = 0) = ϕb,

P(r, z = 0) = Pin,

P(r, z = L) = Pout ,

P(R + h, z) = Pperm,

(6)

where ϕb is the small volume fraction of the uniform feed disper-
sion at the inlet cross section z = 0 and h is the constant thickness
of the membrane. The dispersion flow is driven by a constant pres-
sure difference Pin > Pout , where Pin and Pout are the pressure values
at the inlet and outlet cross sections of the fiber, respectively. Both
pressure values are taken as larger than the constant pressure inside
the permeate, Pperm, which typically equals the atmospheric pres-
sure. Alternative to Pin and Pout , one can specify the longitudinal
pressure difference, ΔLP = Pin − Pout , and the fiber-length averaged
TMP,

ΔTP =
1
L ∫

L

0
(P(R, z) − Pperm)dz, (7)

where P(R, z) for 0 ≤ z ≤ L is the pressure profile at the inner mem-
brane wall, which is a priori unknown. As an approximation forΔTP,
one can use instead the mean TMP,

Δ(l)T P =
1
2
(Pin + Pout) − Pperm, (8)

where the superscript (l) denotes the trans-membrane pressure of
a linearly declining axial pressure profile inside the lumen, corre-
sponding to a membrane with very low solvent permeability where
the flow is of the Hagen–Poiseuille (HP) type. As discussed in
Sec. IV A, the relative difference between ΔTP and Δ(l)T P in the
lumen is small in UF and the radial pressure variation is negligible in
comparison to the axial one. Thus, in setting Pout = 1 atm, only the
specification of ΔLP and Δ(l)T P as the physical control parameters is
required.

We assume the hollow fiber membrane to be fully retentive to
the colloidal particles. This amounts to using the zero normal parti-
cle flux (i.e., reflective) boundary condition at the inner membrane
wall, i.e.,

ϕw(z)vw(z) −D(ϕw(z))
∂ϕ
∂r
∣
r=R
= 0. (9)

Here, vw(z) = v(R, z) is the radial permeate velocity, which is of
positive sign in the inside-out direction, and ϕw(z) = ϕ(R, z) is
the volume fraction of particles, with both quantities evaluated at
the lumen-side membrane wall. On starting from a general irre-
versible thermodynamics description, the reflective boundary con-
dition is recovered from the second integrated Kedem–Katchalsky
equation of cross-membrane transport in the limit of negligible
cross-membrane particle diffusion and advection (see Ref. 2).

The mean solvent velocity, Vs, inside the fully wetted cylindri-
cal membrane sheet (R ≤ r ≤ R + h) of thickness h can be described
by the local Darcy equation Vs = −(κ/ηs)∇P, where κ is the Darcy
permeability of the uniform membrane and ηs is the solvent shear
viscosity.6,7 The characteristic axial velocity inside the membrane,
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um = κΔLP/(ηsL), is distinctly smaller than that inside the lumen,
uHP = R2ΔLP/(4ηsL), with the latter estimated by the Hagen–
Poiseuille (HP) value for the longitudinal velocity along the mem-
brane pipe axis, since um/uHP = 4κ/R2

≪ 1. This supports our usage
of the zero slip tangential boundary condition,10

u(r = R, z) = 0, (10)

at the inner membrane wall.
Different from the lumen region, the axial pressure variation

inside the membrane, estimated as |∂P/∂z| ∼ ΔLP/L, is much smaller
than the radial trans-membrane pressure variation, |∂P/∂r| ∼ΔTP/h.
This allows for a purely radial integration of the local Darcy equation
across the thickness of the membrane, giving rise to a logarithmic
pressure profile and a mean solvent velocity profile equal to27

vs(r) =
κ(P(R) − Pperm)

ηs ln(1 + h
R)

1
r

, (11)

where R ≤ r ≤ R + h. Using vw = vs(R) and replacing P(R) by
P(R) − Π(ϕw) to account for the osmotic pressure results in the
Darcy–Starling law,

vw(z) = LP[P(R, z) − Pperm −Π(ϕw(z))], (12)

where

LP =
κ

ηsR ln(1 + h
R)

(13)

is the hydraulic solvent permeability of the membrane. The param-
eter LP is determined by an UF experiment using a clean mem-
brane and pure solvent. Typical values of LP for UF are in the
range of 10−11

− 10−10 m/(Pa s).2 The Darcy–Starling law in
Eq. (12) includes the local osmotic pressure profile Π(ϕw(z)) at
the inner membrane wall counteracting the local TMP, P(R, z)
− Pperm, at axial distance z from the inlet. Starting likewise from
irreversible thermodynamics, the Darcy–Starling law is recovered
from the first integrated Kedem–Katchalsky equation in the limit
of an ideally particle-reflective membrane and a pure-solvent per-
meate.2 Notice that the Stokes equation of lumen flow in Eq. (4)
is coupled to the advection–diffusion equation via the Darcy–
Starling law and the concentration dependence of the dispersion
viscosity.

The task is to obtain a (numerical) solution of the govern-
ing equations for the cylindrical cross-flow UF model described in
this section. For a full numerical solution, we have used a finite-
element method (FEM) integrated into the COMSOL Multiphysics
software (version 5.3). This COMSOL software was used already in
earlier studies of cross-flow filtration processes (see Refs. 28 and 29).
Salient details of our implementation of the FEM method are given
in Appendix A.

The major contribution of this paper is the development and
application of a semi-analytic so-called modified boundary layer
approximation (mBLA) method for the concentration and flow
profiles of the present UF model. As we are going to show, the
results by the mBLA method are in excellent agreement with the
elaborated FEM results. Remarkably, our C++ implementation of
the mBLA method is typically a thousand times faster than the

corresponding FEM calculations. Even our mBLA Python code is
about 10–20 times faster than the FEM calculations. The Python
code for calculating UF properties using the mBLA method is freely
available.30

III. PROPERTIES OF SOLVENT-PERMEABLE
PARTICLES

The only input to the UF model in Sec. II consists of the disper-
sion transport properties D and η and the dispersion equilibrium
osmotic pressure Π. In UF, the Brownian particles are subject to
flow conditions where the single-particle shear-Péclet number ful-
fills Pea = γ̇a2

h/D0 ≪ 1. Here, γ̇ is a characteristic shear rate of UF
cross-flow, and

D0 =
kBT

6πηsah
(14)

is the Stokes–Einstein–Sutherland single-particle diffusion coeffi-
cient, with the hydrodynamic particle radius ah, Boltzmann’s con-
stant kB, and dispersion temperature T. Using a Hagen–Poiseuille
flow profile, the low-Pea condition transforms into

1 nm3
≲ a3

h ≪
kBT

3πϵΔLP
. (15)

The left inequality is due to the condition that the considered par-
ticles are dispersed and not dissolved. For example, using ΔLP
= 130 Pa and ϵ = 10−3, with water at room temperature as the sol-
vent, Eq. (15) implies that 1 nm ≲ ah < 150 nm. At low-Pea, the
microstructure of dispersions is only slightly perturbed away from
its isotropic equilibrium form without flow.

We use here a generic so-called hydrodynamic radius model
(HRM) for dispersions of monodisperse, solvent-permeable spher-
ical particles with internal hydrodynamic structure and (effec-
tive) hard-core direct interactions. Dispersions in case whose
dynamic properties are well described by this model are non-
ionic and strongly cross-linked microgel dispersions23,25 and core–
shell spherical colloids.31 The permeable particles behave hydrody-
namically like no-slip spheres, immersed in a structureless New-
tonian fluid under low-Reynolds-number flow conditions. They
are globally characterized by a hydrodynamic radius ah somewhat
smaller than the hard-core radius a. The hydrodynamic radius
ah can be related to particle-specific properties and, here, par-
ticularly to the (mean) Darcy permeability κp whose square-root,
√κp, is the hydrodynamic penetration depth. For uniformly per-
meable particles of constant reduced inverse penetration depth
ζ = a/√κp, the relation between the reduced hydrodynamic radius
γ and ζ is32

γ ≡
ah(ζ)

a
=

2ζ2
(ζ − tanh(ζ))

2ζ3 + 3(ζ − tanh(ζ))
= 1 −

1
ζ

+ O(
1
ζ2 ). (16)

This relation expresses that ah decreases monotonically with increas-
ing permeability. We have introduced here the Landau big-O symbol
for which A = O(B)means here that A/B→ const ≠ 0 for B→ 0.

Despite its simplicity, the HRM is universally applicable since
hydrodynamic corrections to model-based dynamic transport prop-
erties such as D and η are quite small, i.e., of quadratic order in the
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reduced slip length γ̄ = 1 − γ and in 1/ζ.32 Therefore, hard spheri-
cal particles with differing (radially varying) internal hydrodynamic
structure are all well described by the HRM, provided γ > 0.8, which
encompasses many experimentally studied dispersions.

The general expression for the dispersion viscosity η at
low-Pea is

η(ϕ; γ) = η∞(ϕ; γ) + Δη(ϕ; γ), (17)

where η∞ is the high-frequency limiting shear viscosity and
Δη(ϕ; γ) is the shear relaxation viscosity part related to non-
instantaneous configurational shear-stress relaxations.

The gradient (i.e., long-time collective) diffusion coefficient
D(ϕ; γ) in the advection–diffusion equation in Eq. (2) is only slightly
smaller than the associated short-time collective diffusion coeffi-
cient, even at high volume fractions close to the freezing transition
value. Therefore, we can approximate D(ϕ; γ) to good accuracy by
the short-time coefficient25

D(ϕ; γ) ≈ D0(γ)
K(ϕ; γ)

S(ϕ)
, (18)

appearing on the right-hand side of this equation. Here, K(ϕ; γ) is
the short-time sedimentation coefficient, and S(ϕ) is the osmotic
compressibility factor. Moreover, D0(γ) = kBT/(6πηsγa). For the
HRM of permeable hard spheres, convenient analytic expressions
are available for the gradient diffusion coefficient D(ϕ; γ) and low-
shear viscosity η(ϕ; γ).23,25 These expressions are summarized in
Appendix B. For γ > 0.8 and hard-core volume fractions ϕ up to
the freezing transition value ϕf = 0.494, they give results in good
agreement with high-precision simulation data.32

The concentration dependencies of the viscosity and gra-
dient diffusion coefficient are obtained from the expressions in
Appendix B and are depicted in Figs. 2(a) and 2(b), respectively. Val-
ues for the reduced hydrodynamic radius considered in this study
are γ = {1, 0.979, 0.888, 0.763}, corresponding to an inverse reduced
solvent penetration depth ζ = {∞, 50, 10, 5}, respectively. As noticed
from the figure, the influence of permeability on the transport prop-
erties is significant at high volume fractions. Notice further that
different from the self-diffusion coefficient, the gradient diffusion
coefficient increases with increasing concentration. While the vis-
cosity decreases with increasing permeability (i.e., decreasing γ),
the opposite trend is observed for gradient diffusion. As shown in
Sec. V C, the influence of the solvent permeability of particles on the
wall concentration profile ϕw(z) becomes significant for non-small
distances z from the inlet, even though the inlet concentration ϕb is
taken to be very small (i.e., ϕb = 10−3).

In addition to D and η, the CP layer is influenced by the osmotic
pressure Π at the membrane wall. For the hard particles of the HRM
model, we use the Carnahan–Starling equation of state,

Π(ϕ) =
kBT
Va

ϕ
(1 + ϕ + ϕ2

− ϕ3
)

(1 − ϕ)3 , (19)

where Va = (4/3)πa3 is the particle volume and a is the hard-core
radius. This expression is valid to high accuracy up to the freezing
transition. Note that Π ∝ 1/a3, i.e., the osmotic pressure decreases
strongly with increasing particle radius. For charged particles not
considered here, there is an additional contribution to the osmotic
pressure arising from (screened) electrostatic interactions.24,33

FIG. 2. (a) Dispersion viscosity, η(ϕ; γ), in units of the solvent viscosity ηs and (b)
gradient diffusion coefficient, D(ϕ; γ), divided by the single-particle diffusion coef-
ficient D0(γ) of a dispersion of permeable spheres as functions of particle volume
fraction ϕ. Values of the reduced hydrodynamic radius γ are as indicated.

IV. PERTURBATION ANALYSES
In this section, we derive semi-analytic expressions for the UF

flow and concentration fields in the lumen region. This is achieved
using regular and singular perturbation analyses performed to lead-
ing order in the small quantities ϵ = R/L ≪ 1 and ϵδ = δCP/R ≪ 1,
respectively, where δCP characterizes summarily the thickness of the
CP boundary layer. As will be shown in this section using a dom-
inant balance analysis of the advection–diffusion equation, δCP is
determined as D0/(LPΔ(l)T P).

We discuss first the regular perturbation analysis of pure-
solvent flow. This is followed by a singular perturbation (matched
asymptotic) analysis of the CP layer profile for dispersion flow,
resulting in our semi-analytic mBLA method where the volume con-
centration field ϕ of the CP layer is determined using a numerical
procedure. While our analysis of pure-solvent flow resembles that in
the recent work by Tilton et al.,10 we use different base units appro-
priate for the extension to the dispersion case where ϕb is non-zero.
Our discussion of the pure-solvent case is not only a necessary pre-
requisite for the mBLA method describing dispersion UF but also
further provides analytic criteria for identifying unwarranted axial
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flow exhaustion (AFE) and permeate flow reversal (PFR) operating
conditions.

Before going into the perturbation analyses of pure-solvent
and dispersion flows, we first introduce the relevant dimensionless
quantities and according base units and explain the employed gen-
eral notation. For any physical quantity f, its dimensionless form is
labeled by a tilde,

f̃ =
f

f ∗
, (20)

where f ∗ is a base (characteristic) unit of f. Base units are labeled here
by an asterisk. For convenience, the base units for the flow properties
u, v, and P and the radial and axial distances r and z, respectively,
are formed using directly accessible input parameters. Explicitly, we
employ the base units

r∗ = R, z∗ = L,

u∗ = uHP, v∗ = LPΔ(l)T P, P∗ = ΔLP.
(21)

Here, u∗ is the axial flow velocity along the pipe axis, identified with
the Hagen–Poiseuille parabolic laminar flow field uHP. For the latter
to apply, the confining pipe material has to be impermeable, corre-
sponding to κ = 0. Moreover, v∗ is the radial permeate velocity in
the pure solvent case (where Π = 0), with the mean TMP in Eq. (12)
approximated by Δ(l)T P. The selected base unit for pressure quanti-
ties is ΔLP, which renders ∂P̃/∂z̃ ∼ O(1) into a derivative of order
one.

The Reynolds number for cylindrical pipe flow is Re = u∗R/νs,
where νs = ηs/ρs is the kinematic viscosity and ρs is the mass density
of the solvent, the former equal to νs ≈ 10−6 m2/s for water at room
temperature. Laminar flow requires that Re ≲ 2000, and the absence
of inertial flow effects implies10

ϵRe≪ 1. (22)

As two suitable dimensionless operating parameters, we intro-
duce first α given by the ratio of mean TMP and ΔLP,

α =
ΔTP
ΔLP

and α∗ =
Δ(l)T P
ΔLP

, (23)

and second the solvent recovery indicator β defined by

β =
Qperm

Qin
and β∗ =

4v∗

ϵu∗
. (24)

Here,

Qin = 2π∫
R

0
u(r, z = 0)rdr,

Qperm = 2πR∫
L

0
vw(z)dz

(25)

are the dispersion volume flow rate through the pipe inlet, Qin,
and the permeate volume flow rate, Qperm, through the hollow fiber
membrane, respectively. The associated base units α∗ and β∗ are
taken as the analytic values of α and β for pure Hagen–Poiseuille

longitudinal flow uHP and pure-solvent transversal permeate flow
vw without osmotic pressure contribution in the Darcy–Starling
equation. The ratio of the two base units,

k2
=
β∗

α∗
=

16
ϵ2
ηsLP

R
, (26)

defines another dimensionless parameter k of interest, characteriz-
ing the overall solvent permeability of the membrane and the lon-
gitudinal pressure drop across the pipe length. The typical range
of ηsLp/R for an UF membrane is 10−10

− 10−14.10 For ϵ = 10−3,
the parameter k is thus quite small, attaining values in the range of
10−1

− 10−4.
Note that the pressure ratio α∗ in combination with k

=
√
β∗/α∗, or alternatively the characteristic value β∗ for the sol-

vent recovery indicator in combination with k, fully characterizes
the dimensionless operating conditions for pure solvent flow (cf.
Sec. IV A). In the case of dispersion flow discussed in Sec. IV B,
one needs to specify additionally a radial Péclet PeR introduced in
Eq. (37), as well as the inlet concentration ϕb, which we select equal
to 10−3 for all considered dispersions. As shown in Secs. IV A and
IV B, it holds that

P̃in − P̃perm = α∗ +
1
2
=
β∗

k2 +
1
2

,

P̃out − P̃perm = α∗ −
1
2
=
β∗

k2 −
1
2

.

(27)

Hence, the pressure operating conditions can be expressed in terms
of α∗ alone. The above noted dimensionless operating parameters
are profitably used to characterize the systems discussed in Sec. V.

A. Pure solvent flow: Regular perturbation
For pure solvent flow in the lumen volume (0 < r < R and

0 < z < L) without dispersed particles, there is no steady-state
boundary layer. We can thus apply a zeroth-order regular pertur-
bation expansion in the small fiber aspect ratio ϵ, leading to an
analytic solvent flow solution. From this solution, operating crite-
ria are obtained, which allow identifying unwarranted AFE and PFR
effects. These criteria are used in our study of the cross-flow UF of
dispersions.

The incompressibility constraint and the radial and longitu-
dinal components of the Stokes equation describing laminar non-
inertial flow are given in non-dimensional form by

0 =
β∗

4
[
∂ṽ

∂ r̃
+
ṽ

r̃
] +

∂ũ
∂z̃

,

∂P̃
∂ r̃
= ϵ2β∗(

∂2ṽ

∂ r̃2 +
1
r̃
∂ṽ

∂ r̃
−

ṽ

r̃2 + ϵ2 ∂
2ṽ

∂z̃2 ),

4
∂P̃
∂z̃
=
∂2ũ
∂ r̃2 +

1
r̃
∂ũ
∂ r̃

+ ϵ2 ∂
2ũ

∂z̃2 ,

(28)

respectively. Moreover, the non-dimensional form of the Darcy–
Starling equation for pure solvent flow is

ṽw(z̃) =
1
α∗
(P̃(z̃) − P̃perm), (29)
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with P̃(z̃ = 0) = P̃in and P̃(z̃ = 1) = P̃out denoting the dimensionless
pressures at the inlet and outlet, respectively.

Before applying regular perturbation, the order of magni-
tude of the base unit β∗ needs to be assessed in relation to ϵ. In
the case of a small β∗ = O(ϵ), the purely longitudinal Hagen–
Poiseuille flow inside a solvent-impermeable pipe is recovered from
Eq. (28) in the zeroth-order regular perturbation limit ϵ → 0. Thus,
β∗ ≫ ϵ is required for the flow field to be affected by the non-
zero solvent permeability of the membrane. In the opposite case
of large β∗ = O(1/ϵ), the longitudinal velocity ũ in Eq. (28) is
neglected to zeroth order in ϵ and a radial flow solution is obtained,
which is incompatible with the axial symmetry requirement
v(r = 0, z) = 0.

Therefore, we assume that ϵ≪ β∗ ≪ 1/ϵ, with according con-
straints for the base unit α∗ in Eq. (26), for a given value of k.
While the incompressibility constraint [i.e., the first equation in
Eq. (28)] and thus fluid volume conservation remain unaffected
to the zeroth order in ϵ, terms of O(ϵ2

) are discarded in the
radial and longitudinal parts of the Stokes equation. The radial part
implies thus a radially constant pressure field P̃ = P̃(z̃). The other
two partial differential equations are solved by separation of vari-
ables using ũ(r̃, z̃) = ũR(r̃)ũZ(z̃) and ṽ(r̃, z̃) = ṽR(r̃)ṽw(z̃). The
radial velocity variations are determined as ũR(r̃) = 1 − r̃2 and
ṽR(r̃) = 2r̃ − r̃3. Note that ũR is of the Hagen–Poiseuille form, while
ṽR agrees with the according leading-order radial velocity depen-
dence reported in Ref. 9. The axial variation of the velocity and
pressure fields is determined by the coupled ordinary differential
equations,

dP̃
dz̃
= −ũZ(z̃) and

dũZ

dz̃
= −β∗ṽw(z̃). (30)

In conjunction with the zero tangential slip, axisymmetry, and
Darcy–Starling boundary conditions, u(r = R, z) = 0, v(r = 0, z) = 0,
and v(r = R, z) = vw(z) with vw(z) in Eq. (12), respectively, Eq. (30)
leads to the analytic flow solution,

P̃(z̃) − P̃perm = A+ekz̃ + A−e−kz̃ ,

ũ(r̃, z̃) = −k(1 − r̃2
)(A+ekz̃

− A−e−kz̃
),

ṽ(r̃, z̃) =
1
α∗
(2r̃ − r̃3

)(P̃(z̃) − P̃perm),

(31)

with coefficients

A± = ±
1

4 sinh(k)
[2α∗ − 1 − (2α∗ + 1)e∓k

]. (32)

The above flow solution is valid to the zeroth order in ϵ.
Since the pressure condition relations in Eq. (27) follow directly

from Eq. (31), this reproduces the O(ϵ0
) flow solution in Refs. 10

and 13 by noting that in these earlier works, Qin was specified instead
of the inlet pressure Pin. According to Eqs. (30) and (31), the hyper-
bolic (exponential) pressure drop from P̃in at z̃ = 0 to P̃out at z̃ = 1
is of convex form provided d2P̃/dz̃2

= β∗ṽw(z̃) > 0. The faster lin-
ear pressure decay is due to fluid sucked out through the permeable
(k > 0) membrane into the permeate. In the limit k→ 0, i.e., for β→ 0,
the linear pressure decay, P̃ = P̃in − z̃, of Hagen–Poiseuille

flow inside a non-permeable tube is recovered, together with ṽ = 0
and ũ = 1 − r̃2.

Given that Pin > Pout (i.e., ΔLP > 0), unwarranted permeate flow
reversal (PFR) at the inner membrane wall from suction (ṽw > 0)
to injection (ṽw < 0) takes place. PFR happens when the local TMP,
P̃(z̃) − P̃perm, changes its sign from positive to negative at an axial
distance z̃ = z̃PFR < 1. Solvent injection across the membrane from
the permeate reservoir into the lumen taking place for z̃ > z̃PFR gives
rise, according to Eq. (30), to a minimal ũZ(z̃) and hence a minimal
cross-sectional volume flow rate Q(z) at z̃ = z̃PFR. The criterion for
no PFR along the full fiber length is thus P̃out > P̃perm or equivalently
α∗ > 1/2. Stated alternatively, for PFR to occur, it must hold that
P̃in > P̃perm > P̃out .

Another unwarranted effect is axial flow exhaustion (AFE),
triggered by a mean TMP, which is large in comparison to ΔLP (i.e.,
for large α∗), where the axial velocity ũ(r̃, z̃) is reversed for axial dis-
tances z̃ from the inlet exceeding z̃AFE < 1. In effect, fluid is sucked
now into the fiber interior both from the inlet and outlet reservoirs.
According to Eq. (30), P̃(z̃) and hence ṽw(z̃) are minimal at this
z̃AFE. The condition for the absence of AFE along the membrane
fiber is thus P̃′(z̃ = 1) < 0, where the prime denotes derivative with
respect to z̃. Owing to fluid volume conservation, this condition is
equivalent to Qperm < Qin or likewise to β < 1.

In summary, PFR and AFE are both absent provided that

1
2
< α∗ < α∗max(k) =

1
2
⋅

cosh(k) + 1
cosh(k) − 1

=
2
k2 +

1
3

+ O(k2
) (33)

for given parameter k. The second inequality is the condition for no
AFE, and the O(k2

) expansion of α∗max(k) is sufficiently accurate for
k ≲ 0.1.

As a numerical illustration, Fig. 3(a) depicts the non-
dimensional axial velocity ũ = u/uHP and the normalized TMP
(Pout − Pperm)/Δ(l)T P = 1 − 1/(2α∗), both taken at the outlet posi-
tion z̃ = 1, for a given k ≈ 0.1464 as used in Ref. 23, correspond-
ing to α∗max(k) = 93.6. Thus, no PFR and AFE are observed for
operating conditions such that 0.5 < α∗ < 93.6, implying that 0.01
< β∗ = α∗k2

< 2.01. Note that β∗ = 2.01 corresponds to β = 1. For
α∗ ≤ 1/2, the permeate flux near the outlet is reversed, as schemat-
ically depicted in Fig. 3(b), while for α∗ ≥ 93.6, the axial flow
is exhausted and then reversed near the outlet, as illustrated in
Fig. 3(c). Since α∗ → 0 implies β∗ → 0 for finite k, it follows that
ṽ∗ → 0. Consequently, Hagen–Poiseuille flow ũ(0, z̃ = 1) = 1 is
recovered in this limit.

We conclude the discussion of pure solvent cross-flow by argu-
ing that for conditions where PFR and AFE are avoided, the oper-
ating parameters α and β are of the same order of magnitude as the
respective base units α∗ and β∗, justifying hereby our usage of the
latter ones. In the following, we show that α/α∗ = ΔTP/Δ(l)T P and
β/β∗ are both of order one.

From the expression for the reduced pressure P̃ in Eq. (31), the
ratios α̃ = α/α∗ and β̃ = β/β∗ are obtained as

α̃(k) =
ΔTP

Δ(l)T P
=

2
k

tanh(
k
2
) = 1 −

k2

12
+ O(k4

),

β̃(k,α∗) =
α̃(k)

ũ(0, 0)
=

4
k2

cosh(k) − 1
1 − 2α∗ + (1 + 2α∗) cosh(k)

,

(34)
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FIG. 3. (a) Normalized axial velocity ũ(r̃ = 0, z̃ = 1) at the pipe axis and out-
let (solid curve) and normalized trans-membrane pressure at the outlet (dotted
curve) as functions of α∗. (b) Schematics of permeate flow reversal (PFR) where
α∗ < 1/2 and (c) axial flow exhaustion (AFE) where α∗ > α∗max(k) = 93.6 for
k ≈ 0.1464.

where ũ(0, 0) = (1 − 2α∗ + (1 + 2α∗) cosh(k))k/(2 sinh(k)) is the
reduced axial velocity at the inlet center.

We first emphasize that α∗ is independent of the membrane
permeability and determined solely by the selected pressure condi-
tions at the inlet, outlet, and permeate, while k is independent of
the pressure operating conditions. Hence, α∗ and k are a useful set
of independent variables, the first one summarily characterizing the
pressure operating conditions and the second one characterizing the
membrane and solvent conditions. A small-k expansion of α̃, β̃, and
ũ(0, 0) shows that these quantities converge to unity as k→ 0, consis-
tent with the recovery of Hagen–Poiseuille flow for zero membrane
permeability.

Different from α̃(k), which is a function of the independent
variable k only, β̃(k,α∗) depends additionally on the independent
variable α∗. For α∗ = 0, it is obtained that β̃(k,α∗ = 0) = α̃2

(k). In
the main part of Fig. 4, it is demonstrated on a double-logarithmic

FIG. 4. Parameter ratios α̃ = α/α∗ and β̃ = β/β∗, the latter at α∗ = 0, as functions
of k for pure solvent cross-flow. The inset shows β̃(k,α∗) in dependence of α∗
divided by α∗max(k) for k ≈ 0.1464 and 1, respectively.

scale that α̃ and β̃ at α∗ = 0 are practically equal to one for values
k ≲ 0.3 typically encountered in UF processes.

The inset illustrates the α∗-dependence of β̃ for k ≈ 0.1464 and
k = 1, respectively, where α∗ has been non-dimensionalized by divi-
sion through the maximally allowed value α∗max(k) without AFE.
One clearly notices that β̃ = O(1) for α∗ ≤ α∗max(k) even for the
unrealistically large value k = 1. The above considerations under-
score the validity of the regular perturbation flow solution in Eq. (31)
in terms of the parameters k and α∗ for the operation window of
α∗ values in Eq. (33), which is depicted by the double arrow in
Fig. 3(a). Up to this point, we have only considered pure-solvent
flow. In the general case of dispersion cross-flow, the now present CP
layer lowers the permeate flux compared with the pure-solvent case.
The pure-solvent case constitutes thus the maximal permeation limit
of dispersion cross-flow so that the operation window in Eq. (33)
applies also to dispersions.

B. Dispersion flow: Singular perturbation
Having analyzed pure solvent cross-flow, we explain next our

leading-order matched asymptotic analysis of stationary dispersion
cross-flow UF for feed volume fractions 0 < ϕb ≪ 1 where a station-
ary CP boundary layer is formed. In the framework of the contin-
uum mechanics description introduced in Sec. II, the characteristic
thickness of the CP layer, δCP, is small compared with the inner fiber
radius R. Therefore, another smallness parameter ϵδ = δCP/R ≪ 1
comes into play in addition to the fiber aspect ratio ϵ, whose func-
tional form is discussed further in the following. We assume that
ϵ = o(ϵδ), where o(⋯) is the Landau small-o symbol, since ϵ is typ-
ically small compared to ϵδ . Here, ϵ = o(ϵδ) means that ϵ/ϵδ → 0 for
ϵδ → 0.

The advection–diffusion, incompressibility, and effective Stokes
equations in Eqs. (2)–(4), respectively, are, to the linear order in ϵ,
only regularly perturbed, which allows us to simply use their O(ϵ0

)

expressions. The first equation in Eq. (28) describing fluid incom-
pressibility preserves, to O(ϵ0

), its pure-solvent form, however,
with ṽ(r̃, z̃) and ũ(r̃, z̃) interpreted now as non-dimensional radial
and axial components, respectively, of the steady-state dispersion
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velocity V(r). The radial part of the Stokes equation shows that to
O(ϵ0

), the dispersion pressure, P̃ = P̃(z̃), is independent of the
radial variable as in the pure solvent case. The axial part of the Stokes
equation reduces in O(ϵ0

) to

4
dP̃
dz̃
=

∂

∂ r̃
(η̃(ϕ(r̃, z̃))

∂ũ(r̃, z̃)
∂ r̃

) +
η̃(ϕ(r̃, z̃))

r̃
∂ũ(r̃, z̃)

∂ r̃
, (35)

where the reduced dispersion viscosity, η̃(ϕ) = η(ϕ)/ηs, is equal to
one in the pure solvent limit ϕ = 0. The steady-state form of the
advection–diffusion Eq. (2) reduces to the zeroth order in ϵ to

ṽ
∂ϕ
∂ r̃

+
4
β∗

ũ
∂ϕ
∂z̃
=

1
PeR
[
∂

∂ r̃
(D̃(ϕ)

∂ϕ
∂ r̃
) +

D̃(ϕ)
r̃

∂ϕ
∂ r̃
], (36)

where D̃(ϕ) = D(ϕ)/D0 is the dimensionless gradient diffusion
coefficient of the dispersion of value one for ϕ = 0. For predomi-
nantly repulsive particle interactions, it holds D̃(ϕ) > 1 for ϕ > 0.
Equation (36) states that the axial particle transport is dominated by
advection.

The right-hand side of this equation is divided by the radial
Péclet number,

PeR =
Rv∗

D0
, (37)

equal to the ratio of the diffusion time, R2/D0, and radial convec-
tion time, R/v∗, across a distance equal to the fiber radius R. A
significant CP boundary layer is formed for PeR ≫ 1, where radial
advection of particles toward the membrane is distinctly faster than
diffusion away from it. This is reflected in the singular perturba-
tion of Eq. (36) with an associated smallness parameter 1/PeR ≪

1. According to the Stokes–Einstein–Sutherland relation for D0 in
Eq. (14), a hydrodynamic particle radius ah in the range of nanome-
ters to micrometers corresponds to values of D0 in the range of 10−10

− 10−13 m2/s for water as the solvent at room temperature. For the
values of the fiber radius R, membrane solvent hydraulic perme-
ability Lp, and TMP used in the result Sec. V, the Péclet number
PeR ∼ 78 is large compared to one. Of additional relevance is the
axial Péclet number PeL = R2u∗/(D0L) = PeR(4/β∗), defined as the
ratio of diffusion and axial convection times across a fiber length
distance.

To derive an inner solution of flow and concentration fields
inside the thin CP boundary layer, it is advantageous to use, instead
of r̃, the reduced radial distance

ỹ = 1 − r̃ (38)

from the membrane surface with a consequential sign change
ṽ → −ṽ in the radial flow velocity. Inside the CP layer, we introduce
a stretched radial coordinate ȳ of O(1) defined by

ȳ =
ỹ
ϵδ

. (39)

In addition to the radial coordinate, the axial velocity requires
stretching according to ū = ũ/ϵδ , owing to the zero tangen-
tial slip boundary condition at the membrane surface. An over-
bar is used to label stretched variables of O(1) inside the CP

layer. Note that the non-dimensional dispersion pressure P̃, radial
velocity ṽ, and reduced axial distance z̃ from the inlet are all
of O(1).

On neglecting the radial curvature term in Eq. (36) by noting
that 1/r̃ = O(ϵδ) and considering that ϵRe ≪ 0 and ϵδ = o(ϵ), the
incompressibility, Stokes, and diffusion advection equations inside
the boundary layer are obtained to leading orders in ϵδ as

∂ṽ

∂ȳ
= −ϵ2

δ
4
β∗

∂ū
∂z̃

,

4ϵδ
∂P̃
∂z̃
=

∂

∂ȳ
(η̃(ϕ)

∂ū
∂ȳ
),

ṽ
∂ϕ
∂ȳ

+ ϵ2
δ

4
β∗

ū
∂ϕ
∂z̃
=

1
ϵδ PeR

∂

∂ȳ
(D̃(ϕ)

∂ϕ
∂ȳ
),

(40)

respectively.
We determine ϵδ now from a dominant balance analysis34

of the boundary layer (i.e., inner) advection–diffusion equation in
Eq. (40), where the radial diffusion term on the right-hand side
is balanced on the left-hand side either by the radial convection
term (case A), the transversal convection term (case B), or the
sum of both of them (case AB). Recall that except for ϵδ , PeR, and
base unit β∗ of the solvent recovery indicator, all other parame-
ters in this equation are of zeroth order in ϵδ . The outcome of
this analysis for the functional dependence of ϵδ on the radial and
axial Péclet numbers is listed in Table I, together with the accord-
ing advection–diffusion equations to the zeroth order in ϵδ . Which
of the three cases should be employed depends on the operating
conditions.

In this paper, case A is used, complying to conditions found in
many UF studies19,23 where the formation of the CP layer is driven
by the solvent permeation of the membrane. This is reflected by the
dominant balance of the radial diffusion term by the radial advection
term ṽ∂ϕ/∂ȳ = O(1), and it implies that ϵδPeR = O(1). This, in turn,
allows for identifying ϵδ = 1/PeR and hence

δCP =
D0

v∗
=

D0

LPΔ(l)T P
(41)

as the characteristic CP layer thickness, as stated already at the begin-
ning of this section. Furthermore, it holds that β∗/4 ≫ 1/Pe2

R,
expressing the condition of significant solvent permeation of the
membrane. In case A, a one-dimensional purely radial advection–
diffusion is obtained, as noted in the table.

Case B describes a situation not relevant to UF studies
where the solvent permeability of the membrane is very low, i.e.,
β∗/4 = v∗/(ϵu∗) ≪ 1/Pe2

R, and where, as a consequence, diffusion
is dominantly balanced by axial advection. Here, ϵδ is of O(1/Pe1/3

L )

as noted in the table. Case AB applies when diffusion is balanced on
a similar level by radial and axial convection, from which it follows
for moderate membrane permeabilities where β∗/4 ∼ 1/Pe2

R that ϵδ
is of the order of 1/PeR ∼ 1/Pe1/3

L . Case AB has a similarity solution
for the CP layer profile, which was used in several previous bound-
ary layer theory studies of UF15,21–23 based on the concept of mass
transfer coefficients.
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TABLE I. Dominant balance analysis of the advection–diffusion equation inside the CP layer. Depending on the operating
conditions, three cases A, B, and AB are distinguished, with respective identification of the reduced CP layer thickness ϵδ in
terms of axial and longitudinal Péclet numbers PeR and PeL = PeR (4/β∗), respectively. Rightmost column lists the respective
advection–diffusion equation to the zeroth order in ϵδ . Case A is used in this work and compared with the similarity CP layer
solution of case AB.

Case Condition Identified ϵδ Advection–diffusion equation

A β∗/4≫ 1/Pe2
R ϵδ ∼ 1/PeR ṽ

∂ϕ
∂ȳ =

∂
∂ȳ(D̃

∂ϕ
∂ȳ )

B β∗/4≪ 1/Pe2
R ϵδ ∼ 1/Pe1/3

L ū∂ϕ
∂ z̃ =

∂
∂ȳ(D̃

∂ϕ
∂ȳ )

AB β∗/4 ∼ 1/Pe2
R ϵδ ∼ 1/PeR ∼ 1/Pe1/3

L ṽ
∂ϕ
∂ȳ + 4

Pe2
Rβ∗

ū∂ϕ
∂ z̃ =

∂
∂ȳ(D̃

∂ϕ
∂ȳ )

For case A conditions valid in most UF studies (see Refs. 19 and
23) for which ϵδ = 1/PeR, the three equations in Eq. (40) can be used
for ϵδ → 0. The resulting partial differential equations are integrated
with respect to ȳ by invoking the reflective flux and zero tangen-
tial slip boundary conditions given in Eqs. (9) and (10), respectively.
This leads to the following implicit integral equations for the radial
and axial dispersion velocities and for the particle volume fraction in
the inner boundary layer:

ṽin
(z̃, [ϕw]) = −ṽw(z̃, [ϕw]),

ūin
(ȳ, z̃, [ϕw]) = 2c(z̃)∫

ȳ

0

1
η̃

dȳ′,

ϕin
(ȳ, z̃, [ϕw]) = ϕw(z̃)e−s̄(ȳ,z̃,[ϕw]),

(42)

where ϕw(z̃) = ϕin
(ȳ = 0, z̃) is the volume concentration of particles

right at the membrane wall. Moreover,

s̄(ȳ, z̃, [ϕw]) = ṽw(z̃, [ϕw])∫
ȳ

0

1
D̃(ϕ(ȳ′, z̃, [ϕw]))

dȳ′,

2c(z̃) = η̃(ϕw(z̃))
∂ūin

∂ȳ
∣

ȳ→0
.

(43)

The reduced dispersion viscosity η̃ and gradient diffusion coefficient
D̃ are functions of ϕin

(ȳ, z̃, [ϕw]). Accurate analytic expressions for
these transport properties and for the osmotic pressure Π are pre-
sented in Sec. III. As indicated, the inner solutions have a functional
dependence on ϕw, which is still unknown at this point.

The full concentration and flow solutions follow from the
asymptotic matching of the inner concentration and velocity solu-
tions with the corresponding outer solutions in the bulk region
outside the thin CP layer, the latter likewise considered to the
zeroth order in ϵ. To obtain the outer solutions from the axial
Stokes equation in Eq. (35) and the advection–diffusion equation
in Eq. (36), notice that to the zeroth order in ϵ, the radial and
axial velocity components ṽ and ũ are still factorized in their r̃
and z̃ dependence such as in the pure solvent case for unchanged
radial dependence as in Eq. (31). Their axial dependence, however,
is determined now by the axial pressure variations according to
the ordinary differential equations in Eq. (30) in conjunction with
the non-dimensionalized generalized Darcy–Starling permeate flux
law,

ṽw(z̃) =
1
α∗
(P̃(z̃) − P̃perm − Π̃(ϕw(z̃))), (44)

for an ideally particle-reflective membrane and pure-solvent perme-
ate, stating that the local TMP needs to exceed the local osmotic
pressure at the membrane wall for having reverse osmotic solvent
flow into the permeate. On solving the resulting inhomogeneous
ordinary linear differential equations by variation of parameters, the
outer flow solution is obtained as

P̃out
(z̃, [ϕw]) − P̃perm = (B+[ϕw] + g−(z̃, [ϕw]))ekz̃

+ (B−[ϕw] + g+(z̃, [ϕw]))e−kz̃ ,

ũout
(ỹ, z̃, [ϕw]) = ỹ(2 − ỹ)ũout

Z (z̃, [ϕw]), (45)

ṽout
(ỹ, z̃, [ϕw]) = −(1 + ỹ − 3ỹ2 + ỹ3

)ṽw(z̃),

where ũout
Z = −dP̃out

/dz̃ and

g±(z̃, [ϕw]) = ±
k
2 ∫

z̃

0
e±kz̃′ Π̃(ϕw(z̃′))dz̃′, (46)

B±[ϕw] = A± ∓
1

2 sinh(k)
(g+(1, [ϕw])e−k + g−(1, [ϕw])ek

),

(47)

with coefficients A± given in Eq. (32). Due to rotational symmetry
with respect to the cylinder axis, ṽout

= 0 for ỹ = 1.
The outer solution of Eq. (36) for the bulk volume fraction is

ϕout
(ỹ, z̃) = ϕb, (48)

consistent with ϕ(r, z = 0) = ϕb, and obtained under the proviso that
the feed volume concentration ϕb ≲ O(ϵδ) is small.

Having determined the inner and outer solutions up to their
functional dependence on ϕw, the outer limit of the inner solution is
now asymptotically matched to the inner limit of the outer solution.
This matching is required for ϕ and ũ only. To the zeroth order in
ϵδ , the radial velocity is not steeply changing across the CP layer, and
P̃ has no radial dependence at all.

Using Eqs. (42) and (45) in conjunction with a multiplicative
mixing rule for ũ, an additive mixing rule for ϕ, and by expressing
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ỹ in terms of r̃ = 1−ỹ with an according sign change in ṽ, the matched
solutions are obtained as

ϕ = (ϕw − ϕb)e
−s̄ + ϕb(1 − s̄e−s̄

),

ũ = ũout
Z (1 + r̃)∫

1

r̃

1
η̃

dr̃′,

ṽ = ṽout ,

P̃ = P̃out ,

(49)

where arguments have been omitted for compactness of the nota-
tion. Details on the invoked matching procedures are given in
Appendix C. Note that the dimensionless pressure operating expres-
sions in Eq. (27), which are valid also for dispersion flow, are
obtained from the pressure relations in Eqs. (45) and (49).

The matched asymptotic solutions for the concentration and
flow fields are still functionally dependent on the wall concentra-
tion profile ϕw(z̃). To determine this profile, we invoke as a global
condition the cross-sectional particle-flux conservation law,

Φ(z, [ϕw]) = 2π∫
R

0
j(r, z, [ϕw]) r dr = Φ(0, [ϕw]), (50)

where

j(r, z, [ϕw]) = ẑ ⋅ J(r, z, [ϕw]) = ϕ(r, z, [ϕw])u(r, z, [ϕw]) (51)

is the axial particles flux. We have disregarded here a negligibly
small flux contribution arising from axial diffusion. Equation (50)
states that for an ideally particle-retentive membrane and without
fouling, the radially integrated steady-state axial particle flux, Φ,
is constant, independent of z, for all membrane fiber cross sec-
tions. Using particle-flux conservation in conjunction with a fixed-
point iteration (FPI) method, ϕw(z) is numerically determined,
and after its substitution, the concentration and flow fields are
determined using Eq. (49). Details on the iteration method are
given in Appendix D. One notices from Eq. (49) that the con-
centration profile ϕ(r̃, z̃) inside and outside the boundary layer is
only implicitly dependent on r̃ and z̃ through the single variable
s̄(r̃, z̃) except for the z̃-dependence of the wall concentration profile
ϕw(z̃). The latter is determined by the particle-flux conservation law
in Eq. (50).

The matched asymptotic solution in Eq. (49), in combina-
tion with particle number conservation and the FPI solver, consti-
tute our modified boundary layer analysis mBLA method, allowing
for a fast and accurate calculation of UF concentration and flow
profiles. Results by this method are presented in Sec. V for per-
meable particle dispersions. We point out that the mBLA result
in Eqs. (49) and (50) for case A does not apply at distances
z ≲ LD close to the inlet, where LD = L ϵ2

δ/(4β
∗
) is the so-

called development length of the stationary CP layer discussed in
Refs. 19 and 35. The development length arises since inside a char-
acteristic distance ∼LD from the inlet, axial convection cannot be
neglected even in case A [see the advection–diffusion equation
in Eq. (40)].

In the dilute limit of concentration-independent transport
properties and zero osmotic pressure (i.e., for η ≈ ηs, D ≈ D0, and

Π = 0), the flow field is fully decoupled from the concentration field.
The function s̄ in Eq. (43) is here simply equal to s̄(ȳ, z̃) = ṽw(z̃)ȳ
with linear ȳ dependence. Thus, for constant transport properties
D̃ = 1 and η̃ = 1, the radial decay of the concentration pro-
file with increasing ȳ is basically a single exponential one. Notice
here that the contribution −ϕb s̄e−s̄ in Eq. (49) is typically negligi-
ble for the non-small axial distances z̃ away from the inlet region.
Using Eq. (D3) in Appendix D, we obtain here the simplified mBLA
result,

ϕCT
w (z̃)
ϕb

≈ 1 +
1
8
(

ũZ(0)
ũZ(z̃)

− 1)(
ṽw(z̃)
ϵδ

+ 3)
ṽw(z̃)
ϵδ

+ 2
ũZ(0)
ũZ(z̃)

(1 −
ṽw(z̃)
ṽw(0)

)

2

, (52)

where ũZ(z̃) and ṽw(z̃) are the pure-solvent expressions given in
Sec. IV A. The superscript (CT) labels properties obtained for con-
stant transport coefficients. The approximation in Eq. (52) for ϕw is
used in Sec. V.

In concluding our presentation of the semi-analytic mBLA
method, we point to its virtues in comparison with the FEM cal-
culations. First, its numerical evaluation is substantially faster while
providing results in good agreements with the FEM calculations.
Second, it gives physical insight into the functional forms of the
concentration and flow profiles and the specific occurrence of the
system parameters. We have exemplified this for the general ϕ(r̃, z̃)
in Eq. (49) and the special ϕ(CT)

w (z̃) in Eq. (52). A thorough discus-
sion of the mBLA method for the concentration and flow profiles is
given in Sec. V.

V. RESULTS AND DISCUSSION
We start by describing the employed UF operating conditions

and the membrane and dispersion parameters. Consider a hollow
fiber membrane of length L = 0.5 m and inner radius R = 0.5 mm
(i.e., ϵ = 10−3). UF is performed for uniform cross-sectional inlet
and outlet pressures Pin and Pout = 1 atm, respectively, and perme-
ate pressure Pperm taken as constant. The above pressure boundary
conditions are selected inside the operating window in Fig. 3 so that
PFR and AFE are absent, except for two particular cases considered
to elucidate their effects.

The solvent is water at room temperature, with viscosity ηs
= 10−3 Pa s. The hydraulic solvent permeability of the uniform mem-
brane is selected as LP = 6.7 × 10−10 m/(Pa s), which is a typical value
in UF2 used in Ref. 23. The associated dimensionless parameter k
introduced in Eq. (26) is k ≈ 0.1464.

The dispersed spherical particles are assumed to be mono-
disperse, with hard-core radius a = 10 nm and the single-particle
diffusion coefficient D0(γ) = kBT/(6πηsγa) equal to about 2.14
× 10−11 m2/s for no-slip particles (γ = 1). The resulting radial
Péclet number is PeR ≈ 78 for no-slip spheres, corresponding to ϵδ
≈ 1.28 × 10−2. The feed concentration at the fiber inlet is fixed to
ϕb = 10−3.

We consider four different types of dispersions, as summa-
rized in Table II. As a reference system, we use impermeable hard
spheres (HS) where γ = 1, with the concentration dependence of
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TABLE II. Discussed dispersion types. HS: impermeable hard spheres (reference
system). PHS: solvent-permeable hard spheres where γ < 1. CT: fictitious hard-
sphere system with constant transport properties D and η as indicated. CT0: like
CT but for zero osmotic pressure Π.

Acronym Π D η

HS Π(ϕ) D(ϕ; γ = 1) η(ϕ; γ = 1)
PHS Π(ϕ) D(ϕ; γ < 1) η(ϕ; γ < 1)
CT Π(ϕ) D(ϕb) ≈ D0 η(ϕb) ≈ ηs
CT0 0 D(ϕb) ≈ D0 η(ϕb) ≈ ηs

the transport coefficients D(ϕ) and η(ϕ) and osmotic pressure Π(ϕ)
accounted for using the analytic expressions in Sec. III. Dispersions
of solvent-permeable hard particles (PHS) are described using the
analytic transport coefficients in Sec. III for γ < 1 and the same
osmotic pressure as for impermeable hard spheres. For permeable
particles, values 0.763 ≤ γ < 1 for the reduced hydrodynamics radius
γ are considered. Using that κp ≈ a2(1 − γ)2 according to Eq. (16),
this amounts to κp ≤ 6 nm2 for the Darcy permeability of the par-
ticles. For comparison, the fixed value LP = 6.7 × 10−10 m/(Pa s)
corresponds to a Darcy permeability κ ≈ LPηsh ≈ 235 nm2, where
Eq. (13) and h ≈ R have been used. The Darcy permeability κ of the
considered UF membrane is hence two orders of magnitude larger
than the permeability of typical permeable colloidal particles. Even
though κp ≪ κ, according to Fig. 2, there is a significant dependence
of the transport properties on κp.

To quantify the influence of the concentration dependence
of D, η, and Π on the CP layer, we further analyze two ficti-
tious systems (CT and CT0) where the transport coefficients are
held constant, equal to their values at the inlet where ϕ = ϕb. In
both systems, the flow is unperturbed by the CP layer. For sys-
tem CT0, the osmotic pressure at the membrane wall is taken to be
zero.

A. Pure solvent flow
We discuss first the velocity and pressure fields inside the mem-

brane fiber for pure solvent flow where ϕb = 0, as described by
Eq. (31) for Stokes flow with ϵRe ≪ 1, the small aspect ratio ϵ ≪ 1
and solvent recovery indicator β∗ ≪ 1/ϵ. The operating conditions
are selected such that unwarranted permeate flow reversal (PFR) and
axial flow exhaustion (AFE) are avoided [cf. Fig. 3 and Eq. (33)],
except for two explicitly noted cases. The employed values for ΔLP
are listed Table III, together with the resulting values for the base
units α∗ ≈ α and β∗ and the solvent-recovery indicator β obtained
using Eq. (31). AFE is observed for the lowest value ΔLP = 30 Pa
(highest α∗) and PFR is observed for the highest value ΔLP = 2 × 104

Pa (lowest α∗; cf. Fig. 3).
The flow profiles for the considered values of ΔLP are

shown in Fig. 5, where we demonstrate the quantitative agreement
between analytic results based on Eq. (31) and FEM calculations
(symbols).

In panels (a) and (b), the pressure and axial velocity distribution
functions P(z̃) and U(z̃) are plotted, defined by

TABLE III. Values of the longitudinal pressure difference, ΔLP, used for the pure-

solvent systems for fixed mean TMP Δ(l)T P = 5000 Pa, Pout = 1 atm, and k ≈ 0.1464.

Additionally listed are resulting values for α∗ = Δ(l)T P/ΔLP and (linearized) solvent
recovery indicator β (β∗).

ΔLP (Pa) α∗ β∗ β

30 1.67 × 102 3.57 1.28
53.4 9.36 × 101 2.01 1.00
102 5.00 × 101 1.07 6.96 × 10−1

103 5.00 1.07 × 10−1 1.01 × 10−1

104 5.00 × 10−1 1.07 × 10−2 1.06 × 10−2

2 × 104 2.50 × 10−1 5.36 × 10−3 5.32 × 10−3

P(z̃) =
P(z̃) − Pout

Pin − Pout
, (53)

U(z̃) =
u(0, z̃) − u(0, 1)
u(0, 0) − u(0, 1)

, (54)

respectively. These distribution functions are of values one at the
inlet and zero at the outlet. The distribution function U(z̃) quan-
tifies the axial velocity along the center-line, r̃ = 0, of the fiber. As
it is expected, the axial deviations (convexity) of P(z̃) from the lin-
ear Hagen–Poiseuille pressure drop PHP(z̃) = 1 − z̃ increases with
decreasing ΔLP (increasing β) due to enlarged solvent permeation
into the permeate. For the smallest ΔLP = 30 Pa, axial flow exhaus-
tion is observed for z̃ > z̃AFE ≈ 0.56, where P becomes negative.
The increase in P with increasing ΔLP toward the linear HP profile
is reflected in an according increase in the normalized axial velocity
at the center-line, u(r̃ = 0, z̃)/u(0, 0), depicted in the inset of panel
(b). The curves for the axial velocity in the inset show stronger devi-
ations from linearity when ΔLP is larger. These (hyperbolic) non-
linearities are more visible in the axial velocity distribution function
U(z̃), which becomes more convex with increasing ΔLP. Here, per-
meate flow reversal is exhibited at axial distances z̃ > z̃PFR ≈ 0.50
for the largest inlet-outlet pressure difference ΔLP = 2 × 104 Pa.
This is indicated by negative values of U(z̃). Different from P(z̃),
U(z̃) is undetermined for HP flow in a non-permeable pipe. Notice
further that visible differences between FEM and analytic results
for U(z̃) are observed at ΔLP = 2 × 104 Pa. In this case, it holds
ϵRe = 1.25, meaning that the Stokes-flow condition ϵRe ≪ 1 is not
obeyed.

In bottom panels (c) and (d) of Fig. 5, we display the radial
dependence of the reduced axial and radial velocity components
u(r̃, z̃)/u(0, z̃) and v(r̃, z̃)/v(1, z̃), respectively. The zeroth-order in
ϵ analytic flow solution in Eq. (31) has a factorized r̃ and z̃ depen-
dence so that the reduced velocity components are equal to ũR(r̃)
and ṽR(r̃), respectively, whose expressions are quoted in the pan-
els (c) and (d). There is again excellent agreement between analytic
and FEM results also for the largest ΔLP. Owing to the cylindri-
cal symmetry, the radial velocity in panel (d) attains its peak value
inside the fiber at r̃ =

√
2/3. As indicated by the dashed curve in this

panel, this peak does not occur for a flat membrane where ṽR(r̃) is
changed to ṽR(r̃) = (3r̃ − r̃3

)/2, with maximal axial velocity attained
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FIG. 5. Pure solvent flow profiles for various longitudinal pressure differences, ΔLP, as indicated. Curves are analytic and symbols are FEM calculation results. (a): Axial
pressure distribution function P(z̃) and (b): axial velocity distribution function, U(z̃), at the fiber center. The inset in (b) shows the non-dimensionalized axial velocity
u(r̃ = 0, z̃)/u(r̃ = 0, z̃ = 0). (c) Normalized axial velocity and (d) normalized radial velocity as functions of r̃ viewed halfway along the fiber length at z̃ = 0.5. The
length-averaged linearized TMP is Δ(l)

T P = 5000 Pa and −5000 Pa for open and closed symbols, respectively.

at the membrane wall (see also the leading-order solutions in Refs. 8
and 9).

For completeness, we have included in Fig. 5 the reversed case
(for ΔLP = 103 Pa only) where the permeate pressure is now larger
than the inlet and outlet pressures, i.e., Pperm > Pin > Pout , with neg-
ative TMP, Δ(l)T P = −5000 Pa (closed symbols). This case matters
for outside-in UF setups and for the cleaning cycle in an inside-out
setup. As shown in panel (a), a reversal from inside-out to outside-
in permeation is indicated by a concave shape of P(z̃). The good
agreement between analytic and FEM results is observed also in this
case.

B. Ultrafiltration of impermeable hard spheres
Having discussed the pure-solvent case, we address now UF of

dispersions of solvent-impermeable hard spheres (HS) on assum-
ing uniform cross-sectional feed concentration ϕb = ϕ(r, z = 0)
= 10−3 and dispersion properties D, η, and Π, as described in Sec. III
for γ = ah/a = 1. To analyze the influence of the concentration

dependencies of dispersion properties on UF, we compare mBLA
and FEM results with the according mBLA and FEM results for
constant D(ϕb) and η(ϕb) taken at the feed concentration ϕb, while
the concentration dependence of Π(ϕ) is preserved (system CT).
In addition, we study the CT system specialized to zero osmotic
pressure (i.e., system CT0 in Table II).

Figure 6 shows the volume concentration, ϕw(z̃), of imperme-
able hard spheres at the membrane wall obtained using the semi-
analytic mBLA (solid and dashed curves) and FEM (open symbols)
methods. The mBLA and FEM results are compared with similarity
solution (sBLA) predictions. The similarity solution was used in ear-
lier works by Roa et al.23 The influence of concentration-dependent
suspension properties on UF is assessed by the comparison with
respective results for systems CT and CT0 displayed in the inset.

There is quantitative agreement between FEM and mBLA
data for both the HS and concentration-independent CT systems
(see Table II). The viscosity increase in the CP layer due to an
enlarged wall concentration is nearly counterbalanced by an asso-
ciated increase in the gradient diffusion of particles away from
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FIG. 6. Membrane wall concentration profile, ϕw(z̃), for an impermeable hard-
sphere (HS) dispersion. Open circles—FEM, solid curve—mBLA, and dashed–
dotted curve—similarity solution (sBLA) results. For comparison, FEM (open tri-
angles), mBLA (dashed curve), and sBLA (dotted curve) results are shown for
constant D(ϕb) and η(ϕb). The inset includes FEM (open squares), mBLA (solid
curve), and sBLA (dashed–dotted curve) results for system CT0 having constant
transport properties and zero osmotic pressure. Closed squares are the predic-
tion by the expression for ϕCT

w in Eq. (52), specialized to Π = 0. The operating

conditions are ΔLP = 130 Pa and Δ(l)
T P = 5000 Pa, with Pout = 1 atm. The prop-

erties of the membrane and the HS and CT colloidal systems are described in the
beginning of Sec. V (see also Table II).

the membrane wall. This explains why the CP layer wall concentra-
tion profile for concentration-dependent transport properties (HS
case) is only slightly larger than that of the CT system. The largest
concentration value ϕw(1) = 362 × ϕb, observed at the outlet posi-
tion z̃ = 1, is still distinctly smaller than the freezing concentration
ϕf = 0.494 of hard spheres so that no reversible filter cake is formed.
The inset in Fig. 6 demonstrates the outcome when the osmotic pres-
sure Π is neglected in the generalized Darcy–Starling membrane law
in Eq. (12). According to the FEM and mBLA results for the CT0 sys-
tem, with the latter following from Eq. (52) for ϕCT

w (z̃), the neglect
of Π has two consequences for ϕw(z̃), namely, a shape change in the
concentration curve from concave to convex and a non-physically
strong enhancement of ϕw(z̃) to values above closest packing. This
highlights the importance of the wall osmotic pressure in the UF
of small particles executing strong Brownian motion, which, in our
study, exert a thermal pressure kBT/Va ≈ 1000 Pa comparable to
Δ(l)T P.

It is interesting to contrast, in Fig. 6, the mBLA results for
ϕw(z̃) with the similarity solution (sBLA) results based on the
advection–diffusion equation for case AB given in Table I. The simi-
larity solution was used already in earlier works on UF.15,21–23 While
it preserves the concave shape of ϕw for non-zero osmotic pressure,
the similarity solution predicts a larger initial slope at the inlet. Fur-
thermore, it distinctly overestimates the FEM concentration except
for the outlet region where a cross-over of the sBLA and mBLA
concentration curves is observed. For the CT0 system, the sBLA pre-
dicts a nearly linear increase in ϕw(z̃), in distinct difference with the
FEM/mBLA data.

We proceed by discussing the radial dependence of the CP
layer volume concentration. Like for pressure and axial velocity,
it is expedient to introduce a radial particle distribution function
ψ(r̃, z̃). For axial distances z ≫ LD ∼ Lϵ2

δ sufficiently larger than
the development length LD, this function is defined by

ψ(r̃, z̃) =
ϕ(r̃, z̃) − ϕb

ϕw(z̃) − ϕb
(55)

so that ψ(r̃ = 1, z̃ > 0) = 1 and ψ(r̃ = 0, z̃ > 0) = 0. Note that ψ ≈ 0
holds in the bulk region outside the CP layer. In mBLA, the radial
distribution function is obtained from the leading-order matched
asymptotic solution as

ψ(ȳ, z̃) = e−s̄(ȳ,z̃)
−

ϕb

ϕw(z̃) − ϕb
s̄(ȳ, z̃)e−s̄(ȳ,z̃), (56)

where ȳ = (1 − r̃)/ϵδ is the stretched radial distance measured from
the wall and s̄(ȳ, z̃) was introduced in Eq. (43). The non-negative
function s̄(ȳ, z̃) is zero at the wall where ȳ = 0. Hence, mBLA pre-
dicts a single exponential decay of ψ with increasing wall distance ȳ
for the CT and CT0 systems, provided that for the considered z̃ > 0,
it holds that ϕw(z̃) ≫ ϕb. For smaller wall concentrations, the sec-
ond contribution s̄ exp{−s̄} to ψ is non-negligible. For the general
HS case with concentration-dependent dispersion properties, s̄/ȳ is
non-constant and the decay of ψ is not single exponential in general.
Note that s̄e−s̄ goes to zero both for ȳ → 0 and ȳ →∞, and it attains
its maximum value of 1/e at s̄ = 1.

FEM and mBLA results for the radial particle distribution func-
tion ψ(r̃, z̃) inside the CP layer are depicted in Fig. 7, as func-
tions of ȳ, for constant transport properties (CT) in panel (a) and
concentration-dependent transport properties (HS) in panel (b).
Also regarding the radial concentration dependence, there is excel-
lent agreement between FEM and mBLA for all distances z̃ > 0.1.
For system CT considered in panel (a), the decay of ψ with
increasing wall distance is practically single exponential, as ψ
≈ exp{−s̄} according to mBLA. For later use, the inset shows
s̄(ȳ, z̃)/ȳ, which is independent of ȳ, as required for a single expo-
nential decay of ψ.

Different from the CT case, the decay of ψ for the HS case in
panel (b) is not single exponential any more, and ψ is larger at all
axial distances z̃, which is mainly due to D(ϕ) > D(ϕb). The non-
exponential decay of ψ is reflected in a monotonically increasing
s̄(ȳ, z̃)/ȳ shown in the inset, triggered by the monotonic increase
in D(ϕ) with increasing ϕ, as depicted in Fig. 2(b). The mono-
tonic behavior of D(ϕ) is characteristic for dispersions of Brownian
particles with short-range repulsive direct interactions.24 Accord-
ing to Eq. (43), in the CT case, it is s̄(ȳ, z̃)/ȳ → ṽw(z̃) for ȳ → 0,
while in the HS case, the near-wall limit is approximately equal to
ṽw(z̃)/D̃(ϕw) < ṽw(z̃).

From the knowledge of ψ(r̃, z̃), one infers the mean thickness,
δ(z), of the CP layer at axial distance z, defined by the cross-sectional
average

δ(z) = ∫
R

0 (R − r)rψ(r, z)dr

∫
R

0 rψ(r, z)dr
. (57)
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FIG. 7. Radial particle distribution function, ψ(r̃, z̃), in the CP layer region as
function of ȳ for selected distances z̃ from the inlet as indicated. (a): FEM (open
symbols) and mBLA (lines) results for constant transport (CT) properties and (b)
for impermeable hard spheres concentration-dependent transport properties (HS).
The insets in (a) and (b) depict the respective curves for s̄(ȳ, z̃)/ȳ as functions of
ȳ. System parameters and operating conditions as in Fig. 6.

For system CT, an analytic expression for δ(z), named δCT(z), is
obtained using Eq. (52) for ϕCT

w for axial distances z ≫ LD where
mBLA is valid. This expression reads

δCT
(z)

δCP
=
ϕw(z)[ṽw(z) − 2ϵδ] − ϕb[3ṽw(z) − 8ϵδ]

ṽw(z)ϕw(z) − ϕb[2ṽw(z) − 3ϵδ]
1

ṽw(z)
, (58)

where δCP = ϵδR is the characteristic thickness of the CP layer in
Eq. (41). At axial positions where ϕw ≫ ϕb, the expression reduces
to δCT

(z)/δCP ≈ 1/ṽw(z).
The CP layer thickness δ(z) is shown in Fig. 8 for systems HS,

CT, and CT0, obtained from FEM and mBLA calculations of ψ(r̃, z̃),
and compared with the analytic expression for δCT(z) in Eq. (58). For
the CT0 system, δ(z̃) is practically constant of value close to δCP at
z̃ > 0.1. This can be attributed to the near-constancy of the axially
resolved reduced TMP, [P(z̃) − Pperm]/Δ(l)T P, which varies only lit-
tle from 1.016 at the inlet to 0.990 at the outlet, with an according
permeate flux ṽw(z̃), which is nearly constant.

FIG. 8. Axially resolved mean CP layer thickness, δ(z), of the HS, CT, and CT0 sys-
tems obtained using FEM (symbols) and mBLA (solid lines). Additionally shown
is δ(z)CT according to Eq. (58), with ṽw(z̃) determined using mBLA (dashed
lines). The mean thickness is divided by δCP = D0/v∗ ≈ 6.40 × 10−6 m. System
parameters and operating conditions as in Fig. 6.

We notice for the CT system that the concentration-dependent
wall osmotic pressure gives rise to a monotonically increasing
δ(z) ∝ 1/ṽw(z). The FEM data (open triangles) overlap with the
corresponding dashed δCT(z) curve, while the solid mBLA curve
is located slightly above the FEM data. As expected, δ(z) is fur-
ther enlarged when the concentration dependence of D and η is
accounted for (HS system). Here, the FEM data (open circles) are
distinctly exceeded by the corresponding solid mBLA curve. Using
in Eq. (58) the permeate flux ṽw(z;ϕw(z)) with ϕw(z) obtained
from mBLA, the FEM data for the CP layer thickness are now
underestimated (see the uppermost dashed curve). The pronounced
differences between the mBLA and δCT(z) curves for the HS sys-
tem are entirely due to the neglected concentration dependence
of the transport coefficients in the latter curve. The concentration
dependencies of D and η have the net effect to increase slightly
the width δ(z) of the CP layer. This is essentially due to the influ-
ence of the gradient diffusion coefficient D, which increases with
increasing concentration according to Eq. (18) and Appendix B.
An increased D tends to spread out the diffuse CP layer. There
is an additional contribution to the CP layer thickness due to the
viscosity η, which, according to Fig. 2, also increases with increas-
ing concentration. In overcompensating the gradient diffusion
away from the membrane surface, the concentration-dependence
of the viscosity of hard spheres causes a larger wall concentra-
tion profile ϕw(z), as noticed in Fig. 6 in comparison with the CT
case.

So far, we have discussed the axial and radial variation of the
CP concentration profile and the axial variation of its thickness.
For the HS and CT systems, we analyze next the radial variation
of the axial and radial velocity components u and v, respectively.
According to the mBLA analysis, only u is affected by the CP
layer.

Figure 9(a) includes results for the radial dependence of
u(r̃, z̃ = 0.5), normalized by its maximal value u(r̃ = 0, z̃ = 0.5).
In the bulk region of the lumen, the velocity profile is practi-
cally equal to the quadratic Hagen–Poiseuille (HP) profile inside
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FIG. 9. Radial dependence of (a) normalized axial velocity, u(r̃, z̃), and (b) nor-
malized radial velocity, v(r̃, z̃), of systems HS and CT evaluated halfway between
the inlet and outlet. Insets in (a) and (b) show the respective velocity profiles
in the CP layer region, with a stretching factor 1/ϵδ used in panel (a). Symbols
are FEM data, solid curves are mBLA results, and the dotted curves in (a) are
Hagen–Poiseuille predictions. System parameters and operating conditions as in
Fig. 6.

a solvent-impermeable pipe for both the HS and CT systems.
Deviations from the HP profile are manifested in the thin CP
layer, as noticed in the inset where a linear increase in the
stretched axial velocity with increasing (stretched) distance ȳ from
the membrane wall is observed. While for the CT system, the
CP layer velocity profile is of the HP form (dotted line), in
the HS model, the axial velocity (solid line) is perturbed away
from the HP form, owing to the concentration dependence of
η(ϕ). We observe again good agreement between FEM and mBLA
results.

The radial dependence of the radial velocity component v(r̃, z̃
= 0.5) normalized by the permeate flux at z̃ = 0.5 is shown in
Fig. 9(b). Its behavior in the CP layer region is resolved in the inset.
The mBLA method predicts that v(r̃, z̃) is equal to the pure-solvent
form even inside the CP layer, given by ṽR = 2r̃ − r̃3. The FEM data
(symbols) are in accord with this polynomial behavior to an accuracy
of O(ϵδ).

As noted in relation to the cross-sectional particle flux conser-
vation law in Eq. (50), the dominant axial transport mechanism in

UF is convection. It is useful to separate the axial (convective) flux
j(r̃, z̃) in Eq. (51) into its excess and bulk parts according to

j(r̃, z̃) = (ϕ − ϕb)u + ϕbu ≡ jex + jb. (59)

Note that without CP layer, jex is identically zero. Using this flux
separation, the cross-sectionally integrated flux Φ(z̃) in Eq. (50) is
accordingly described as the sum of an excess and bulk part, i.e.,

Φ(z̃) = Φex(z̃) + Φb(z̃). (60)

Figure 10 displays the excess and bulk axial flux contributions,
jex(r̃, z̃) and jb(r̃, z̃), calculated for an impermeable hard-sphere dis-
persion using FEM (symbols) and mBLA (lines). Notice the log-
arithmic scale for the reduced radial distance, ỹ, from the mem-
brane wall. The excess flux, jex, grows from zero at ỹ = 0 toward
its maximal value at ỹ ∼ ϵδ , with a value of ϵδ marked by the dot-
ted vertical line, with an ensuing decay of the excess flux toward its
bulk value zero. The maximum of jex grows with increasing axial
distance, z̃, from the inlet, and its position shifts to larger ỹ. The
radial position of the maximum can be used as an alternative mea-
sure of the thickness of the diffuse CP layer at a given z̃, resulting
in values somewhat larger than those for δ(z̃) defined in Eq. (57).
The maximum of jex is a consequence of the trade-off between axial
velocity u, which grows with increasing ỹ, and excess concentration
ϕ − ϕb, which decays to zero with increasing ỹ. In comparison with
the FEM results, mBLA tends to slightly overestimate the maxi-
mum for larger axial values z̃. Obviously, the reduced bulk flux,
jb/(ϕbu∗) = ũ, increases monotonically from zero at ỹ = 0 to its
maximum located at the pipe center ỹ = 1. Due to solvent leaking
from the lumen into the permeate, the maximum of ũ decreases with
increasing z̃.

FIG. 10. Excess and bulk axial flux contributions, jex(r̃, z̃) and jb(r̃, z̃), respec-
tively, for the HS system, plotted as functions of the non-stretched reduced dis-
tance ỹ from the membrane, for axial positions z̃ as indicated. The fluxes are
non-dimensionalized by division with ϕbu∗. Closed and open symbols are FEM
results for jex and jb, respectively. Solid and dashed lines are associated mBLA
results for jex and jb, respectively. System parameters and operating conditions as
in Fig. 6.
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The described features of the axial flux contributions jex and
jb influence the behavior of the associated FEM and mBLA cross-
sectional fluxes Φex and Φb, which are plotted in Fig. 11. As shown
in this figure, Φex(z̃) increases monotonically with increasing z̃ from
0 at the inlet to its maximal value at the outlet where the CP layer
is the most pronounced. In contrast, Φb(z̃) decays monotonically
from its maximal value at the inlet to its minimal value at the out-
let. According to the cross-sectional particle flux conservation law in
Eq. (50), the sum Φ = Φex + Φb is constant independent of z̃ for
an ideally particle-retentive membrane. For the present operating
conditions, Φb is larger than Φex up to z̃ ≈ 0.9 where the two flux
curves cross over. With increasing longitudinal pressure difference
ΔLP, the crossover point shifts to larger z̃ and disappears eventually.
Notice that for the considered cylindrical geometry, Φb(z̃) is defined
by a one-dimensional radial integral over r̃jb(r̃, z̃), which puts more
weight on flux contributions at larger radial distances r̃ from the pipe
axis. Different from jb, which has its maximum at r̃ = 0, the maxi-
mum of r̃jb is shifted to r̃ ≈ 1/

√
3. The value 1/

√
3 is exactly obtained

for the CT system.
Up to this point, we have studied the concentration and flow

profiles of impermeable hard-sphere dispersions for fixed operating
conditions, namely, for ΔLP = Pin − Pout = 130 Pa and Δ(l)T P = 5000
Pa with fixed Pout = 1 atm. In Fig. 12, we analyze how the wall con-
centration profile ϕw(z̃) changes when the longitudinal pressure dif-
ference between the outlet and inlet is increased up toΔLP = 5000 Pa.
For increasing ΔLP, the outlet pressure is kept constant, equal to
the atmospheric pressure, as assumed throughout this paper, while
the values of Pin and Pperm are adjusted to comply with the con-
sidered ΔLP value. All other UF parameters are the same as used
before.

According to panel (a) of Fig. 12, the wall concentration profile
flattens with increasing ΔLP, which is due to the enhanced axial con-
vection of particles. For pressure differences ΔLP > 1895 Pa (i.e., α∗
< 2.64), the profile develops a maximum, which is shallow on the
scale of panel (a). The non-monotonic behavior of ϕw(z̃) at large
ΔLP is more clearly displayed on the adjusted scale of panel (b),

FIG. 11. Cross-sectional integrated excess and bulk axial flux contributions
Φex(z̃) and Φb(z̃), respectively, divided by their base unit Φ∗ = πR2ϕbu∗.
FEM (symbols) and mBLA (lines) results are shown for a HS system. The total
cross-sectional flux, Φ = Φex + Φb, is constant. System parameters and operating
conditions as in Fig. 6.

FIG. 12. (a) Normalized wall concentration profile, ϕw(z̃), for increasing values
of the longitudinal pressure difference ΔLP as indicated. Symbols are FEM and
solid lines are the respective mBLA results. In (b), the profiles for the three largest
considered ΔLP in (a) are magnified by using a different ordinate scale. The values
for the ratio α∗ of mean linearized TMP and ΔLP, corresponding to the ΔLP values
noted in (a), are α∗ = {38.46, 19.23, 9.62, 3.85, 2.64, 1.92, 1.00}, listed in the order
of increasing ΔLP.

where also the shift of the maximum to smaller values of z̃ with
increasing ΔLP becomes visible. The relative difference between the
FEM and mBLA data for ϕw increases according to the series {0.022,
0.031, 0.032, 0.025, 0.15, 0.17, 0.23} with accordingly increasing val-
ues of ΔLP quoted in panel (a). Although the FEM concentration
profile and particularly its maximum are somewhat underestimated
by the mBLA result at large ΔLP (solid lines), the overall shape and
the location of the maximum are still well captured. The reason for
the growing relative difference with increasing ΔLP is that the con-
dition ϕw ≫ ϕb in our leading-order boundary layer analysis is not
strictly fulfilled any more for large ΔLP.

The dashed curves in panel (b) are the result by the analytic
expression for ϕCT

w (z̃) in Eq. (52) applied to the CT0 system. As seen,
ϕCT
w (z̃) provides a good qualitative description of the wall concentra-

tion profile for large ΔLP, where ϕw is small enough that the effects
of the osmotic pressure and the concentration dependence of D and
η are negligible.

We can further approximate ϕCT
w (z̃) in Eq. (52) by its leading

term in ϵδ given by
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ϕCT
w (z̃)
ϕb

≈ 1 +
β∗

8ϵ2
δ

ṽ2
w(z̃)

ũZ(z̃) ∫
z̃

0
ṽw(z̃′)dz̃′. (61)

This expression allows for a crude approximation for the height of
the profile maximum identified as β∗/(8ϵ2

δ) = {43, 31, 16} for the
three ΔLP values in panel (b).

To gain a physical understanding of the non-monotonic behav-
ior of ϕw(z̃), it is proficient to analyze first the simplified expres-
sion in Eq. (61). For large ΔLP, the pressure profile P̃(z̃) ≈ P̃in − z̃
≡ P̃HP(z̃) is nearly equal to the linear HP pressure profile and ũZ(z̃)
is nearly constant. For an illustration of these features, see Fig. 5(a)
and the inset of Fig. 5(b). The permeate flux without osmotic pres-
sure is, according to the Darcy–Starling equation, given by ṽw(z̃)
= 1 + α∗(1/2 − z̃) when the linear HP pressure profile is used. This
leads to a fourth-order polynomial in z̃ for the ϕCT

w (z̃) in Eq. (61).
For values α∗ > 1/2 inside the operating window in Fig. 3 and
0 < z̃ ≤ 1, this polynomial predicts a unique maximum for ϕCT

w ,
provided that α∗ < α∗c,max = 2.91, with a k-independent critical
value α∗c,max. The critical value is depicted by the horizontal dashed
line in Fig. 13.

We perform next a more refined analysis based on the original
expression for ϕCT

w (z̃) in Eq. (52) without assuming a linear pressure
profile. On physical grounds, we can identify numerically the criti-
cal value, α∗c (k, ϵδ), of α∗ using dϕCT

w /dz̃ = 0 at z̃ = 1 [cf. Fig. 12(b)].
Results for α∗c (k, ϵδ) obtained from this numerical analysis using the
NSolve function in Mathematica are shown in Fig. 13 as functions
of k for different values of ϵδ as indicated. All results presented so
far were obtained using ϵδ = 1.28 × 10−2 and k = 0.1464, which
amounts to α∗c = 2.64 with corresponding ΔLP = 1895 Pa. The FEM
and mBLA concentration profiles for this critical pressure difference
are depicted in Fig. 12(b) (closed triangles). Notice that k ∼

√
κL/R2,

with the Darcy permeability κ. Thus, k can be varied by changing the
inner fiber radius R or κ, and ϵδ = 1/PeR by changing the radial Péclet
number. For given ϵδ , a non-monotonic concentration profile is pre-
dicted for all points (α∗, k) inside the according concave-shaped
curve in Fig. 13. An interesting observation is that the curves for

FIG. 13. Open symbols: mBLA predictions for the critical operating parameter
α∗c (k, ϵδ) for different ϵδ values as indicated. Solid lines are guides to the eye.
The dashed horizontal line is α∗c,max = 2.91. Non-monotonic wall concentration
profiles are predicted for given k and ϵδ , provided that values for α∗ are selected
such that α∗ < α∗c (k, ϵδ).

α∗c (k, ϵδ) in Fig. 13 are bounded from above by α∗c,max = 2.91. The
upper boundary value is obtained for the linear HP pressure pro-
file, while all the other depicted curves are based on convex-shaped
pressure profiles (see Fig. 5).

In closing our discussion of Figs. 12 and 13, we remark that
a non-monotonic profile for ϕw(z̃) was observed also in earlier
(long-time limiting) FEM-UF calculations by Marcos et al.,29 but
without deeper analysis. In that part of their results where ϕw is
non-monotonic, they used Δ(l)T P = 27.6 kPa and a characteris-
tic wall shear rate of 8000/s, which translates into α∗ ≈ 1.07. This
value is well below the threshold value α∗c = 2.54 obtained using
their parameters, showing the consistency of their findings with our
analysis.

C. Ultrafiltration of permeable hard spheres
In this subsection, we study UF of dispersions of solvent-

permeable Brownian hard spheres (PHS system in Table II). The
viscosity η(ϕ; γ) and gradient diffusion coefficient D(ϕ; γ) of these
dispersions are obtained using the analytic expressions in Sec. III
based on the hydrodynamic radius model. Recall that γ = ah/a < 1
is the reduced hydrodynamic radius, related by Eq. (16) to the
reduced inverse hydrodynamic penetration depth by ζ ≈ 1/γ
+ O(1/γ2

), where γ = 1 − γ. As illustrated in Figs. 2(a) and 2(b), an
increasing permeability of the particles is reflected in a decreasing
γ and hence in a decreasing viscosity and increasing gradient dif-
fusion coefficient. The reduced hydrodynamic radii considered are
γ = {1.0, 0.979, 0.888, 0.763} corresponding to ζ = {∞, 50, 10, 5}. For
zero permeability (HS system), γ = 1 and ζ = ∞. For the osmotic
pressure, we use again the Carnahan–Starling expression for hard
spheres in Eq. (19), which is independent of γ.

Figure 14 quantifies the influence of solvent permeability on
the wall concentration profile ϕw(z̃). With increasing permeabil-
ity (decreasing γ), the wall concentration decreases by about 30%
for the smallest considered γ = 0.763 where the profile is nearly

FIG. 14. Influence of solvent permeability on wall concentration profile, ϕw(z̃), in
the UF of permeable hard-sphere dispersions (PHS system) for values of reduced
hydrodynamic radius γ as indicated. Open symbols are FEM and lines are mBLA
results. The inset displays the osmotic wall pressure Π(ϕw(z̃)) divided by the
thermal pressure kBT /Va ≈ 1000 Pa. Operating conditions are as in Fig. 6.
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linear. Owing to the strictly monotonic behavior of the hard-sphere
osmotic pressure in the fluid dispersion phase region, this fea-
ture of ϕw is reflected in the according wall osmotic pressure
profiles displayed in the inset. According to Figs. 2(a) and 2(b),
D(ϕ; γ) is enhanced with decreasing γ and the viscosity is low-
ered. The first effect enhances the particle diffusion out of the CP
layer into the bulk, and the second one enhances cross-flow, which
results in the combined effect that the CP layer is less strongly
developed.

We analyze now how the solvent permeate flux is overall
affected by the particle permeability. For this purpose, we investigate
the so-called flow efficiency,

Qperm

Q0
perm
=
ΔTP − ⟨Π⟩

Δ0
TP

≈ 1 −
⟨Π⟩
ΔTP

< 1, (62)

where

⟨Π⟩ =
1
L ∫

L

0
dz [Π(ϕw(z)) −Πperm] (63)

is the fiber length-averaged trans-membrane osmotic pressure, with
the permeate osmotic pressure Πperm taken to be zero throughout
this work. The permeate volume flow rate of solvent through the
particle-retentive membrane, Qperm, was defined already in Eq. (25).
Here, Q0

perm = 2πRLLPΔ0
TP is its expression for the pure solvent

case, and Δ0
TP is the according fiber length-averaged TMP. Accord-

ing to Fig. 15, the flow efficiency decreases with increasing TMP.
This decrease is less pronounced for permeable particles due to a
less developed CP layer with the accordingly reduced wall osmotic
pressure. The latter counteracts the TMP in the Darcy–Starling law
in Eq. (12) for the permeate flux. Since k = 0.1464 is small, we obtain
Δ0

TP ≈ ΔTP ≈ Δ(l)T P, where Δ(l)T P is the length-averaged, linearized
TMP introduced in Eq. (8). The inset in Fig. 15 shows the ratio,
⟨Π⟩/ΔTP, of length-averaged osmotic pressure and TMP, which,
according to the right-most approximate equation in Eq. (62),

FIG. 15. Solvent flow efficiency, Qperm/Q0
perm, calculated using FEM (open sym-

bols) and mBLA (lines) for reduced hydrodynamic radius values γ as indicated.
The inset depicts the length-averaged wall osmotic pressure, ⟨Π⟩, divided by the
length-averaged TMP ΔT P and plotted vs ΔT P. System parameters and operating
conditions as in Fig. 14.

determines the flow efficiency accurately. The key point to remem-
ber from Fig. 15 is that the reduction in flow efficiency is practically
due to the osmotic pressure alone, since for small k, the convex devi-
ation from linearity of the pressure profile P(z) is very small [cf. also
Eq. (34) for small k].

We finally investigate how the radial dependencies of the par-
ticle volume concentration and excess axial flux are affected by the
solvent permeability of particles. Based on the matched asymptotic
solution for ϕ(ȳ, z̃) in Eq. (49), we use here a simplified and more
qualitative analysis by ignoring the axial variations of the concentra-
tion and flow inside the CP layer. Explicitly, in Eq. (49), we substitute
the z̃-independent values ϕw = 0.4, ṽw = 1, and ũZ = 1. For the

FIG. 16. (a) Estimated radial particle distribution function ψ(ȳ) and (b) non-
dimensionalized excess particle flux jex(ȳ)/(u∗ϕb) obtained from the matched
asymptotic solution in Eq. (49) for given values ϕw = 0.4, ṽw = 1, and ũZ = 1
taken as z̃-independent. For the PHS system, various values of γ are considered
as indicated. Dotted lines are the according prediction for the CT system. Other
system parameters and operating conditions as in Fig. 6.
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considered large wall concentration where ϕw/ϕb = 400, the matched
solution reduces further to ϕ(ȳ) ≈ ϕw exp{−s̄(ȳ)}.

The resulting estimate for the ȳ-dependence of the radial par-
ticle distribution function, ψ(ȳ), is presented in Fig. 16(a) for
various γ, together with the ȳ-normalized function s̄(ȳ)/ȳ (inset).
The function s̄(ȳ) appears as exponent in the matched asymp-
totic solution for the volume concentration in Eq. (49). A single-
exponential radial decay of ϕ(ȳ) is observed for the CT system,
as reflected by the accordingly constant s̄/ȳ shown as the dotted
line in the inset. For this system, D̃ ≈ 1, η̃ ≈ 1, and Π(0.4)
= 2.77 × kBT/Va. Significant deviations from the single-exponential
radial decay are observed already for a HS system of imperme-
able particles where γ = 1. The non-exponential slower decay of
ψ(ȳ) becomes further enhanced with increasing permeability (see
the inset), reflected in a more extended CP layer. It should be
recalled that we have enforced a fixed value for ϕw , whereas γ is
varied.

Figure 16(b) shows the radial dependence of the associated
reduced excess axial flux, jex(ȳ)/(ϕbu∗). With increasing perme-
ability (decreasing γ), the excess flux is enhanced, and it spreads
out to larger distances ȳ from the membrane wall, consistent with
the behavior of ψ(ȳ) in panel (a). The differences in the excess flux
between systems CT (dotted line) and HS (solid line) are due to the
disregard of concentration-dependent viscosity effects in the former
system on the stretched axial velocity ū = ũ/ϵδ [see also the inset of
Fig. 9(a)].

VI. CONCLUSIONS
We have presented a generic model describing CP layer effects

in the cross-flow ultrafiltration (UF) of dispersions of solvent-
permeable, hard spherical particles inside a hollow fiber mem-
brane. To this end, we derived a versatile semi-analytic modi-
fied boundary layer approximation (mBLA) method of calculat-
ing axial and radial concentration and flow profiles. In addition,
global UF quantities were analyzed, including the mean CP layer
thickness, cross-sectionally integrated excess and bulk fluxes, and
the solvent flow efficiency. The quantitative accuracy of the mBLA
method was assessed by the comparison with elaborate FEM cal-
culations for the same systems. We showed by this comparison
that the mBLA method gives more accurate results for the con-
centration field than a boundary layer similarity solution used in
earlier works. In this way, we have established the mBLA method
as an efficient, accurate, and versatile method of predicting UF
concentration and flow properties. Another benefit of this method
is that it inter-relates concentration and flow properties with the
hydrodynamic structure (i.e., solvent permeability) of the dispersed
particles.

For the concentration- and permeability-dependent viscos-
ity and gradient diffusion coefficient entering into the UF equa-
tions, we used accurate analytic expressions, which are well
tested against dynamic computer simulations. The concentration-
dependent effects of these transport properties and the osmotic
pressure were examined by the juxtaposition with results by the
schematic CT and CT0 systems where the transport properties
are kept constant. Using the mBLA method, explicit analytic

expressions were derived for the CT(0) systems concentration
and flow profiles. These expressions are also useful for identi-
fying general trends and unexpected features such as the non-
monotonic wall concentration profile ϕw(z̃) observed for strong
axial convection (cf. Figs. 12 and 13). On the basis of the CT0 sys-
tem, we were able to derive a criterion (i.e., a critical operating
parameter α∗c ) for the occurrence of non-monotonic concentration
profiles.

Moreover, criteria have been provided in Eq. (33), which allow
for identifying the values for the characteristic operating parame-
ter α∗ where unwarranted axial flow exhaustion (AFE) and per-
meate flow reversal (PFR) are absent. While derived for the pure-
solvent case, these criteria are likewise valid for the UF of dispersions
described by the mBLA method.

The presented semi-analytic mBLA method, in conjunction
with the accurate descriptions of transport properties of solvent-
permeable particles, can be useful for the design, analysis, and opti-
mization of UF setups. The present paper bridges the gap between
fundamental properties of colloidal particles with internal hydrody-
namic structure and the UF process of industrial and medical rele-
vance. It gives new insight into the transport mechanisms pertinent
to the UF process.

An intriguing result included in Fig. 10 is the assessment of
the radial extension of the excess axial flux jex and the dependence
of excess and bulk fluxes on the axial distance from the inlet. The
figure highlights that the (diffuse) region wherein jex is different
from zero extends significantly beyond the characteristic CP layer
thickness δCP. The excess flux in this region increases strongly with
increasing ϕw .

Two radial curvature effects due to the cylindrical geometry
of the membrane are, first, the maximum of the radial velocity v

away from the membrane wall at r =
√

2/3R and, second, a cross-
sectionally integrated axial flux Φex(z̃) distinctively larger than in a
planar membrane geometry.

The solvent permeability of particles increases gradient dif-
fusion and lowers the dispersion viscosity. These features cause
the suppression of the strength of the CP layer and an according
increase in the solvent flow efficiency. For the solvent permeabil-
ity to be influential in UF, the wall concentration should be large
and the hydrodynamic radius should be sufficiently smaller than the
hard-core particle radius.

In our generic study of CP layer effects, we have disregarded
fouling effects such as filter cake formation, adsorption of particles
at the membrane, and the clogging of membrane pores. These are
specific phenomena depending on the properties (e.g., morphology)
of the membrane and material-specific properties of the particles
and solvent. For the operating conditions used in this paper, there
is no reversible cake formation by crystallization or vitrification.
Following earlier works by Bacchin et al.,36,37 reversible filter-cake
formation can be included into the present mBLA method by using
an extended Darcy–Starling equation where the additional hydraulic
cake resistance is accounted for, in conjunction with assuming
a constant volume fraction (e.g., freezing transition) value at the
interface of cake and CP layers.

The present mBLA method assumes mono-disperse particles.
Polydispersity can be included by accounting for cross correlations
in the hydrodynamic mobilities and diffusivities, which gives rise
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to a system of advection–diffusion equations where the concen-
trations and fluxes of the various components are coupled. Size
polydispersity enlarges the concentration in the CP and cake lay-
ers and enhances clogging and, in combination with axial con-
vection, the tendency of size-fractionation along the membrane
fiber.

Additional features, disregarded in our UF treatment, are pat-
terned membranes consisting of alternating particle-permeable and
impermeable segments and UF effects caused by this patterning. An
exploration of cake layer effects, polydispersity, UF of microgel sus-
pensions, and patterned membranes based on accordingly extended
mBLA methods will be the topic of future works.
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APPENDIX A: FINITE-ELEMENT METHOD (FEM)
Using the Laminar Flow and Transport of dilute Species

packages of COMSOL, we have obtained numerically the weak
axisymmetric two-dimensional solutions of the flow and concentra-
tion fields of the effective Stokes and time-dependent advection–
diffusion Eqs. (2)–(4), respectively, coupled through the Darcy–
Starling law and the reflective wall boundary condition for oper-
ating conditions described in Sec. II. While we are interested in
steady-state results, for improved numerical stability, the time-
dependent advection–diffusion Eq. (2) is solved using zero-flow
and uniform pressure initial boundary conditions, starting from a
tube initially filled with the solvent only, for time independent uni-
form volume fraction ϕb of particles at the inlet lumen cross sec-
tion. Different from the semi-analytic boundary layer analysis, axial
diffusion is accounted for in the FEM calculations, which, how-
ever, is small compared with axial convection. We use a backward-
differentiation method for the time stepping. The steady-state solu-
tions are monitored once transients in the flow and concentra-
tion profiles have decayed, typically after the characteristic time
t ∼ 10 × R2/D0. As pressure operating conditions, we specify
the values of ΔLP and Δ(l)T P discussed in Sec. II. The employed
analytic expressions for the gradient diffusion coefficient D, low-
shear viscosity η, and osmotic pressure Π are summarized in
Sec. III.

Streamline and crosswind stabilizations are invoked for both
the Stokes equation (P1/P1 elements) and the advection–diffusion
equation (P2 element). We use triangular and quadrilateral meshes
in the bulk and the boundary (CP) layer regions, respectively, with
the meshes generated by COMSOL. The smallest radial thickness
of the mesh near the inner membrane wall is about 10−3R. This
is sufficiently small to capture the radial flow and concentration
variations in the CP layer region, since for the operating condi-
tions reported in the result Sec. V, the element Péclet number38

is smaller than one. For computational efficiency, the radial thick-
ness of the near-wall quadrilateral mesh part is increasing, with a

constant growth rate, in directions away from the membrane wall.
The axial mesh thickness is stretched by a factor of 100 relative to
the radial thickness, since L/R = 1000 is very large. A similar mesh
generation is described in Refs. 29 and 39 where, however, triangular
elements are used in both the bulk and boundary layer regions of the
lumen.

APPENDIX B: SOLVENT-PERMEABLE PARTICLE
TRANSPORT PROPERTIES

We provide here the analytic expressions for the low-shear-
rate viscosity η(ϕ; γ), the equilibrium gradient diffusion coefficient
D(ϕ; γ), and the osmotic compressibility factor S(ϕ) for dispersions
of solvent-permeable colloidal hard spheres.25

We employ an expression for the high-frequency viscosity part
η∞ in Eq. (17) given by

η∞(ϕ; γ)
ηs

= 1 +
5
2
γ3ϕ

1 + ϕŜ(γ)
1 − γ3ϕ[1 + ϕŜ(γ)]

, (B1)

with the generalized Saito function

Ŝ(γ) = [
2λV(γ)

5γ3 − γ3
], (B2)

where

λV(γ) = 5.0021 − 39.279γ̄+143.179γ̄2
−288.202γ̄3 +254.581γ̄4, (B3)

and γ̄ = 1 − γ.
The analytic expression for the shear relaxation viscosity part

Δη in Eq. (17) is

Δη(ϕ; γ) =
η∞(ϕ; γ)
ΓS(ϕ; γ)

Δη(no−HI)
(ϕ)

ηs
, (B4)

where Δη(no−HI )(ϕ) is the expression for Δη without hydrodynamic
interactions equal to

Δη(no−HI)
(ϕ)

ηs
≈

12
5
ϕ2
(1 − 7.085ϕ + 20.182ϕ2

)

1 − ϕ/0.64
. (B5)

Here, ΓS(ϕ; γ) is a short-time generalized Stokes–Einstein function,
which reads

Γs(ϕ; γ) =
DS(ϕ; γ)

D0(γ)
η∞(ϕ; γ)

ηs
. (B6)

Furthermore,

Ds(ϕ; γ)
D0(γ)

= 1 + λt(γ)ϕ[1 + 0.12ϕ − 0.70ϕ2
] (B7)

with

λt(γ) = −1.8315+7.820γ̄−14.231γ̄2 +14.908γ̄3
−9.383γ̄4 +2.717γ̄5

(B8)

is the short-time self-diffusion coefficient Ds(ϕ; γ), divided by its
infinite dilution value D0(γ) = kBT/(6πηsaγ).
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On the right-hand side of the gradient diffusion coefficient
expression in Eq. (18), we use the Carnahan–Starling osmotic com-
pressibility factor for hard spheres,

S(ϕ) =
(1 − ϕ)4

(1 + 2ϕ)2 + ϕ3(ϕ − 4)
, (B9)

and the (short-time) sedimentation coefficient

K(ϕ, γ) = 1 + λK(γ)ϕ [1 − 3.348γϕ + 7.426(γϕ)2

− 10.034(γϕ)3 + 5.882(γϕ)4
], (B10)

where

λK(γ) = −6.5464 + 8.592γ̄ − 3.901γ̄2 + 2.011γ̄3
− 0.142γ̄4. (B11)

APPENDIX C: ASYMPTOTIC MATCHING
We explain here the asymptotic matching of the leading-order

inner and outer solutions for the axial velocity u and the volume
concentration ϕ given in Sec. IV B. As discussed therein, no asymp-
totic matching is required to leading order for the pressure P and the
radial velocity v.

From equating the outer representation of the inner velocity
solution,

ūin
(ȳ →∞, z̃) = c(z̃)2ȳ, (C1)

to the inner representation of the outer solution,

ūout
(ỹ → 0, z̃) = ũout

Z (z̃)2ȳ, (C2)

we can identify the tangential dispersion stress at the membrane,
equal to 2 c(z̃), as c(z̃) = ũout

Z (z̃). For simplicity, we use here the
multiplicative mixing rule40 for the matched axial velocity ũ, i.e.,

ũ(ỹ, z̃, [ϕw]) =
ũin ũout

2ũout
Z ỹ
= ũout

Z (2 − ỹ)∫
ỹ

0

1
η̃

dỹ′

ϵδ
, (C3)

where the product of inner and outer solution has been divided by
the common (overlap) part 2ũout

Z ỹ. Using 2 − ỹ = 1 + r̃, this gives
Eq. (49).

For the matched volume concentration ϕ, we use an additive
mixing rule

ϕ(ȳ, z̃) = ϕin
(ȳ, z̃) + ϕout

− ϕ′(ȳ, z̃), (C4)

with ϕout = ϕb and ϕin
= ϕwe−s̄. The so far unknown correction

function ϕ′ is determined next from using the three conditions

lim
ȳ→0

ϕ′ = ϕb, lim
ȳ→∞

ϕ′ = 0, and lim
ȳ→0

∂ϕ′

∂ȳ
= 0, (C5)

where the third one imposes the zero normal flux condition at the
membrane wall [see Eq. (9)].

The expression

ϕ′(ȳ, z̃, [ϕw]) = ϕbe−s̄(ȳ,z̃,[ϕw])(1 + s̄(ȳ, z̃, [ϕw])) (C6)

satisfies these three conditions exactly. In addition, the resulting
matched ϕ in Eq. (49) is a solution both of the zeroth-order inner
and outer advection–diffusion equations. The extra term, s̄e−s̄, in
ϕ′ guarantees the exact validity of the zero-flux boundary condi-
tion regarding ϕ, and it is related to the first-order in ϵδ singu-
lar perturbation correction. While this extra term is negligible for
ϕb/ϕw ≲ O(ϵδ), in accord with ϕ(ȳ, 0) = ϕb[1 + O(ϵδ)], it signif-
icantly improves the agreement with FEM calculation results when
ϕb/ϕw is not small.

APPENDIX D: DETERMINATION OF ϕw
In this the appendix, we describe how the particle concentra-

tion profile at the membrane wall, ϕw(z̃), is determined numerically
using a fixed-point iteration (FPI) method based on the particle-flux
conservation law in Eq. (50). We further show how the approximate
analytic expression in Eq. (52) for the wall concentration is obtained
for constant D = D0 and η = ηs and zero osmotic pressure.

We start by defining the linear integral operator Tz̃′ acting on
functions f (r̃, z̃) by

Tz̃′[f ] = ũout
Z (z̃

′, [ϕw])∫
1

0
r̃(1 + r̃)

× (∫

1

r̃

1
η(ϕ(r̃′, z̃′, [ϕw]))

dr̃′)f (r̃, z̃ = z̃′)dr̃. (D1)

Note that Tz̃′ is functionally dependent on ϕw .
From substituting the matched asymptotic solutions for ϕ and

ũ into Eq. (50), one realizes that the particle flux conservation law
can be expressed in terms of the radial integral operator as

Tz̃[ϕ] = T0[ϕ]. (D2)

Substituting the matched asymptotic solution f = ϕ into this opera-
tor equation gives an implicit integral equation for ϕw ,

ϕw
ϕb
= 1 +

T0[1 − s̄e−s̄
] − Tz̃[1 − s̄e−s̄

]

Tz̃[e−s̄]
≡ Fz̃[ϕw], (D3)

which defines the non-linear operator Fz̃ . Note here that
s̄ = s̄(r̃, z̃, [ϕw]) is a functional of ϕw and that Fz̃ is operating on
s̄ taken at axial distance z̃ from the inlet.

To solve the implicit integral Eq. (D3) for ϕw(z̃), we use the
under-relaxed fixed-point iteration (FPI) scheme,41

ϕ(n+1)
w (z̃) = (1 −w)ϕ(n)w + w ϕb Fz̃[ϕ(n)w ], (D4)

for z̃ ∈ (0, 1] and relaxation parameter 0 < w ≤ 1. With the wall
concentration profile ϕw(z̃) calculated in this way, the matched
asymptotic solution for ϕ(r, z) in Eq. (49) and the flow field are fully
determined.

We have commonly used the uniform starting profile
ϕ(0)w (z̃) = ϕb in the FPI, but we checked that the result for ϕw
is insensitive to the uniform starting values ϕ(0)w , selected to be
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FIG. 17. Particle wall volume concentration iterations, ϕ(n)
w (z̃), for increasing iter-

ation number n as indicated (curves) and compared with the FEM result (open
circles) for ϕw(z̃). The inset shows the relative difference, χ(n), according to
Eq. (D5). The considered dispersion is an aqueous impermeable hard-sphere sys-
tem with ϕb = 10−3. The membrane is characterized by k ≈ 0.1464, and the UF

operating conditions are Δ(l)
T P = 5 kPa and ΔLP = 130 Pa.

smaller than the freezing transition value ϕf = 0.494 of colloidal hard
spheres. The optimal choice of the relaxation parameter w depends,
in principle, on the operating conditions and dispersion properties.
We found w = 0.1 to be a good selection for all systems discussed in
Sec. V.

In each iteration step, ϕ(n)w (z̃) is substituted into the matched
asymptotic profiles in Eq. (49). To obtain s̄(ȳ, z̃, [ϕw]) in the expres-
sion for ϕ, integration with respect to ȳ is performed numerically
using the fourth-order Runge–Kutta method, while all other inte-
grals required for the profiles are obtained by trapezoidal integra-
tion. In both numerical integration schemes, an adaptive step size for
y is used since the mBLA method invokes two different length scales
ȳ and ỹ in the CP layer and bulk region, respectively. We have imple-
mented the mBLA solution for the concentration and flow fields in
a multiprocessing Python package.30

Figure 17 illustrates the convergence of the wall concentration
profile with increasing iteration number n for a hard-sphere refer-
ence dispersion, as described in Sec. V. The inset shows the measure
χ(n) of the mean relative difference between FEM and mBLA results
at the nth iteration step, i.e.,

χ(n) =

¿
Á
Á
ÁÀ

1
N

N

∑
i

⎛

⎝

ϕ(n)w (zi)

ϕFEM
w (zi)

− 1
⎞

⎠

2

, (D5)

where N is the number of equidistant axial positions {zi} with z0 = 0
and zN−1 = L. The iterations commonly convergence with χ(n)
≈ 0.03 for n > 40 (see the inset). In all our results, we used n = 100
iterations.

DATA AVALIABILITY

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request. Our

Python code for calculating ultrafiltration properties using the
mBLA method is freely available at doi:10.5281/zenodo.3895786.30
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