001     887797
005     20210130010638.0
024 7 _ |a 10.1016/j.envpol.2019.113803
|2 doi
024 7 _ |a 0013-9327
|2 ISSN
024 7 _ |a 0269-7491
|2 ISSN
024 7 _ |a 1873-6424
|2 ISSN
024 7 _ |a 1878-2450
|2 ISSN
024 7 _ |a 2128/26208
|2 Handle
024 7 _ |a altmetric:73057166
|2 altmetric
024 7 _ |a pmid:31864922
|2 pmid
024 7 _ |a WOS:000519655100053
|2 WOS
037 _ _ |a FZJ-2020-04427
082 _ _ |a 690
100 1 _ |a Liang, Yan
|0 P:(DE-Juel1)138954
|b 0
245 _ _ |a Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605628210_4611
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although nanoscale surface roughness has been theoretically demonstrated to be a crucial factor in the interaction of colloids and surfaces, little experimental research has investigated the influence of roughness on colloid or silver nanoparticle (AgNP) retention and release in porous media. This study experimentally examined AgNP retention and release using two sands with very different surface roughness properties over a range of solution pH and/or ionic strength (IS). AgNP transport was greatly enhanced on the relatively smooth sand in comparison to the rougher sand, at higher pH, and lower IS and fitted model parameters showed systematic changes with these physicochemical factors. Complete release of the retained AgNPs was observed from the relatively smooth sand when the solution IS was decreased from 40 mM NaCl to deionized (DI) water and then the solution pH was increased from 6.5 to 10. Conversely, less than 40% of the retained AgNPs was released in similar processes from the rougher sand. These observations were explained by differences in the surface roughness of the two sands which altered the energy barrier height and the depth of the primary minimum with solution chemistry. Limited numbers of AgNPs apparently interacted in reversible, shallow primary minima on the smoother sand, which is consistent with the predicted influence of a small roughness fraction (e.g., pillar) on interaction energies. Conversely, larger numbers of AgNPs interacted in deeper primary minima on the rougher sand, which is consistent with the predicted influence at concave locations. These findings highlight the importance of surface roughness and indicate that variations in sand surface roughness can greatly change the sensitivity of nanoparticle transport to physicochemical factors such as IS and pH due to the alteration of interaction energy and thus can strongly influence nanoparticle mobility in the environment.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhou, Jini
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dong, Yawen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 3
700 1 _ |a Šimůnek, Jiří
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bradford, Scott A.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.envpol.2019.113803
|g Vol. 258, p. 113803 -
|0 PERI:(DE-600)2013037-5
|p 113803 -
|t Environmental pollution
|v 258
|y 2020
|x 0269-7491
856 4 _ |u https://juser.fz-juelich.de/record/887797/files/Liang%20et%20al._ENVPOL_2020_postprint.pdf
|y Published on 2019-12-13. Available in OpenAccess from 2021-12-13.
909 C O |o oai:juser.fz-juelich.de:887797
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-08-31
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON POLLUT : 2018
|d 2020-08-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON POLLUT : 2018
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21