000887798 001__ 887798
000887798 005__ 20210130010638.0
000887798 0247_ $$2doi$$a10.1016/j.geoderma.2020.114507
000887798 0247_ $$2ISSN$$a0016-7061
000887798 0247_ $$2ISSN$$a1872-6259
000887798 0247_ $$2Handle$$a2128/26178
000887798 0247_ $$2altmetric$$aaltmetric:85872685
000887798 0247_ $$2WOS$$aWOS:000551513100014
000887798 037__ $$aFZJ-2020-04428
000887798 082__ $$a910
000887798 1001_ $$0P:(DE-Juel1)167455$$aWang, Liming$$b0$$eCorresponding author$$ufzj
000887798 245__ $$aDissolved and colloidal phosphorus affect P cycling in calcareous forest soils
000887798 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000887798 3367_ $$2DRIVER$$aarticle
000887798 3367_ $$2DataCite$$aOutput Types/Journal article
000887798 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605539833_2433
000887798 3367_ $$2BibTeX$$aARTICLE
000887798 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887798 3367_ $$00$$2EndNote$$aJournal Article
000887798 520__ $$aDissolved and colloidal phosphorus (P) represent the mobile P fractions in soils, but their role in P cycling in forests is still largely unclear. In this study of four calcareous forest soil profiles, the elemental compositions of different size fractions of water dispersible colloids (WDC) were investigated by asymmetric field flow fractionation. Nuclear magnetic resonance spectroscopy (NMR) was applied to identify the organic P compounds in soils, WDC, and soil solutions. Carbon was the dominant element in WDC of all soil horizons, including mineral soils that were rich in Ca or Si. Although chemical composition of P varied dramatically with increasing depth, the colloidal P composition remained unchanged. This contrasting difference between mineral soil and its WDC fraction indicated that the colloids were not locally generated but originated from the overlying organic soil horizons. Carbonate minerals were unlikely involved in colloid formation under acidic condition. Instead, Ca2+ probably drove colloid formation by bridging organic matter, including P-containing compounds released from litter degradation. Colloid formation was influenced by climate, vegetation, and soil characteristics. No dissolved P was detected in deeper mineral soil horizons due to efficient retention by Ca minerals. Colloidal P was still present in deeper soil layers and thus of significance for potential P vertical transfer.
000887798 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000887798 588__ $$aDataset connected to CrossRef
000887798 7001_ $$0P:(DE-Juel1)159255$$aMissong, Anna$$b1
000887798 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b2
000887798 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b3
000887798 7001_ $$0P:(DE-HGF)0$$aPrietzel, Jörg$$b4
000887798 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b5
000887798 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2020.114507$$gVol. 375, p. 114507 -$$p114507 -$$tGeoderma$$v375$$x0016-7061$$y2020
000887798 8564_ $$uhttps://juser.fz-juelich.de/record/887798/files/Liming%20Wang%20et%20al_Geoderma_2020_postprint.pdf$$yPublished on 2020-06-11. Available in OpenAccess from 2022-06-11.
000887798 909CO $$ooai:juser.fz-juelich.de:887798$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000887798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167455$$aForschungszentrum Jülich$$b0$$kFZJ
000887798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159255$$aForschungszentrum Jülich$$b1$$kFZJ
000887798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b2$$kFZJ
000887798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b3$$kFZJ
000887798 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b5$$kFZJ
000887798 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000887798 9141_ $$y2020
000887798 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-06
000887798 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887798 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887798 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2018$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000887798 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-06$$wger
000887798 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000887798 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000887798 980__ $$ajournal
000887798 980__ $$aVDB
000887798 980__ $$aUNRESTRICTED
000887798 980__ $$aI:(DE-Juel1)IBG-3-20101118
000887798 9801_ $$aFullTexts