001     887798
005     20210130010638.0
024 7 _ |a 10.1016/j.geoderma.2020.114507
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a 2128/26178
|2 Handle
024 7 _ |a altmetric:85872685
|2 altmetric
024 7 _ |a WOS:000551513100014
|2 WOS
037 _ _ |a FZJ-2020-04428
082 _ _ |a 910
100 1 _ |a Wang, Liming
|0 P:(DE-Juel1)167455
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Dissolved and colloidal phosphorus affect P cycling in calcareous forest soils
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605539833_2433
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dissolved and colloidal phosphorus (P) represent the mobile P fractions in soils, but their role in P cycling in forests is still largely unclear. In this study of four calcareous forest soil profiles, the elemental compositions of different size fractions of water dispersible colloids (WDC) were investigated by asymmetric field flow fractionation. Nuclear magnetic resonance spectroscopy (NMR) was applied to identify the organic P compounds in soils, WDC, and soil solutions. Carbon was the dominant element in WDC of all soil horizons, including mineral soils that were rich in Ca or Si. Although chemical composition of P varied dramatically with increasing depth, the colloidal P composition remained unchanged. This contrasting difference between mineral soil and its WDC fraction indicated that the colloids were not locally generated but originated from the overlying organic soil horizons. Carbonate minerals were unlikely involved in colloid formation under acidic condition. Instead, Ca2+ probably drove colloid formation by bridging organic matter, including P-containing compounds released from litter degradation. Colloid formation was influenced by climate, vegetation, and soil characteristics. No dissolved P was detected in deeper mineral soil horizons due to efficient retention by Ca minerals. Colloidal P was still present in deeper soil layers and thus of significance for potential P vertical transfer.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Missong, Anna
|0 P:(DE-Juel1)159255
|b 1
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 2
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 3
700 1 _ |a Prietzel, Jörg
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 5
773 _ _ |a 10.1016/j.geoderma.2020.114507
|g Vol. 375, p. 114507 -
|0 PERI:(DE-600)2001729-7
|p 114507 -
|t Geoderma
|v 375
|y 2020
|x 0016-7061
856 4 _ |u https://juser.fz-juelich.de/record/887798/files/Liming%20Wang%20et%20al_Geoderma_2020_postprint.pdf
|y Published on 2020-06-11. Available in OpenAccess from 2022-06-11.
909 C O |o oai:juser.fz-juelich.de:887798
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167455
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159255
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-06
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2018
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21