001     887803
005     20210130010639.0
024 7 _ |a 10.1016/j.scitotenv.2020.140454
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/26160
|2 Handle
024 7 _ |a pmid:32610243
|2 pmid
024 7 _ |a WOS:000568814100010
|2 WOS
037 _ _ |a FZJ-2020-04433
082 _ _ |a 610
100 1 _ |a Ren, Yuzhi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Short-term effects of snow cover manipulation on soil bacterial diversity and community composition
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605293930_16531
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Winter snow cover is a major driver of soil microbial processes in high-latitude and high-altitude ecosystems. Warming-induced reduction in snow cover as predicted under future climate scenarios may shift soil bacterial communities with consequences for soil carbon and nutrient cycling. The underlying mechanisms, however, remain elusive. In the present study, we conducted a snow manipulation experiment in a Tibetan spruce forest to explore the immediate and intra-annual legacy effects of snow exclusion on soil bacterial communities. We analyzed bacterial diversity and community composition in the winter (i.e., the deep snow season), in the transitional thawing period, and in the middle of the growing season. Proteobacteria, Acidobacteria, and Actinobacteria were dominant phyla across the seasons and snow regimes. Bacterial diversity was generally not particularly sensitive to the absence of snow cover. However, snow exclusion positively affected Simpson diversity in the winter but not in the thawing period and the growing season. Bacterial diversity further tended to be higher in winter than in the growing season. In the winter, the taxonomic composition shifted in response to snow exclusion, while composition did not differ between exclusion and control plots in the thawing period and the growing season. Soil bacterial communities strongly varied across seasons, and the variations differed in specific groups. Both soil climatic factors (i.e., temperature and moisture) and soil biochemical variables partly accounted for the seasonal dynamics of bacterial communities. Taken together, our study indicates that soil bacterial communities in Tibetan forests are rather resilient to change in snow cover, at least at an intra-annual scale.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Lijie
|0 P:(DE-Juel1)185909
|b 1
700 1 _ |a Yang, Kaijun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Zhijie
|0 P:(DE-Juel1)173793
|b 3
700 1 _ |a Yin, Rui
|0 0000-0002-4580-1317
|b 4
700 1 _ |a Tan, Bo
|0 0000-0003-0019-9446
|b 5
700 1 _ |a Wang, Lixia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liu, Yang
|0 P:(DE-Juel1)168104
|b 7
700 1 _ |a Li, Han
|0 P:(DE-Juel1)176208
|b 8
700 1 _ |a You, Chengming
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Liu, Sining
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Xu, Zhenfeng
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Kardol, Paul
|0 0000-0001-7065-3435
|b 12
773 _ _ |a 10.1016/j.scitotenv.2020.140454
|g Vol. 741, p. 140454 -
|0 PERI:(DE-600)1498726-0
|p 140454 -
|t The science of the total environment
|v 741
|y 2020
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/887803/files/Article%20Number%20140454%20DOI%2010.1016j.scitotenv.2020.140454.pdf
|y Published on 2020-06-23. Available in OpenAccess from 2021-06-23.
909 C O |o oai:juser.fz-juelich.de:887803
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185909
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173793
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2018
|d 2020-09-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2018
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21