000887813 001__ 887813 000887813 005__ 20240711085632.0 000887813 0247_ $$2doi$$a10.1016/j.actamat.2020.03.055 000887813 0247_ $$2ISSN$$a1359-6454 000887813 0247_ $$2ISSN$$a1873-2453 000887813 0247_ $$2Handle$$a2128/26465 000887813 0247_ $$2altmetric$$aaltmetric:79768433 000887813 0247_ $$2WOS$$aWOS:000533619700009 000887813 037__ $$aFZJ-2020-04439 000887813 082__ $$a670 000887813 1001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b0$$eCorresponding author 000887813 245__ $$aEquilibrium and kinetic shapes of grains in polycrystals 000887813 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020 000887813 3367_ $$2DRIVER$$aarticle 000887813 3367_ $$2DataCite$$aOutput Types/Journal article 000887813 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607622476_29888 000887813 3367_ $$2BibTeX$$aARTICLE 000887813 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000887813 3367_ $$00$$2EndNote$$aJournal Article 000887813 520__ $$aThe equilibrium crystal shape is a convex shape bound by the lowest energy interfaces. In many polycrystalline microstructures created by grain growth, the observed distribution of grain boundary planes appears to be dominated at low driving forces (after long grain growth times) by the planes present in the equilibrium crystal shape. However, at earlier stages of grain growth, it is expected that kinetic effects will play an important role in grain boundary motion and morphology. Analogous to the equilibrium crystal shape, the kinetic crystal shape of seed crystals growing from a liquid at higher supersaturations is bound by the slowest growing orientations. This study presents an equivalent construction for grain boundaries in polycrystals and uses it to determine the kinetic crystal shape for strontium titanate as a function of temperature. Relative grain boundary mobilities for strontium titanate for the low energy crystallographic orientations from seeded polycrystal experiments are used to calculate the kinetic crystal shapes as a function of temperature and annealing atmosphere. The kinetic crystal shapes are then compared to the morphologies and orientations of the interfaces of the growing seed crystals, and to the equilibrium crystal shapes, as wel 000887813 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000887813 588__ $$aDataset connected to CrossRef 000887813 7001_ $$0P:(DE-HGF)0$$aBlendell, John E.$$b1 000887813 7001_ $$0P:(DE-HGF)0$$aHandwerker, Carol A.$$b2 000887813 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2020.03.055$$gVol. 191, p. 101 - 110$$p101 - 110$$tActa materialia$$v191$$x1359-6454$$y2020 000887813 8564_ $$uhttps://juser.fz-juelich.de/record/887813/files/Rhe20i.pdf$$yRestricted 000887813 8564_ $$uhttps://juser.fz-juelich.de/record/887813/files/KCS_200121_WR.pdf$$yPublished on 2020-04-12. Available in OpenAccess from 2021-04-12. 000887813 909CO $$ooai:juser.fz-juelich.de:887813$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000887813 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b0$$kFZJ 000887813 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000887813 9141_ $$y2020 000887813 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23 000887813 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000887813 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000887813 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23 000887813 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23 000887813 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000887813 9801_ $$aFullTexts 000887813 980__ $$ajournal 000887813 980__ $$aVDB 000887813 980__ $$aUNRESTRICTED 000887813 980__ $$aI:(DE-Juel1)IEK-1-20101013 000887813 981__ $$aI:(DE-Juel1)IMD-2-20101013