000887815 001__ 887815
000887815 005__ 20240711085632.0
000887815 0247_ $$2doi$$a10.1111/jace.16932
000887815 0247_ $$2ISSN$$a0002-7820
000887815 0247_ $$2ISSN$$a1551-2916
000887815 0247_ $$2Handle$$a2128/26468
000887815 0247_ $$2WOS$$aWOS:000503637600001
000887815 037__ $$aFZJ-2020-04441
000887815 082__ $$a660
000887815 1001_ $$00000-0001-8403-0490$$aSchlup, Andrew P.$$b0$$eCorresponding author
000887815 245__ $$aHot‐pressing platelet alumina to transparency
000887815 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000887815 3367_ $$2DRIVER$$aarticle
000887815 3367_ $$2DataCite$$aOutput Types/Journal article
000887815 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607623041_9301
000887815 3367_ $$2BibTeX$$aARTICLE
000887815 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887815 3367_ $$00$$2EndNote$$aJournal Article
000887815 520__ $$aAlumina powder with a platelet morphology was hot‐pressed to transparency with preload pressures of 0‐8 MPa, maximum temperatures of 1750‐1825°C, maximum pressures of 2.5‐80 MPa, and isothermal hold times of 1‐7 hours. Optical transmission (in‐line and total), as well as optical losses (backward/forward scattering and absorption), of the hot‐pressed samples were measured and related to the microstructure. Higher hot‐pressing temperatures increase the in‐line transmission. A gray discoloration of the samples (indicative of high absorption) was minimized by heat treating the powder in air prior to hot pressing and reducing the preload pressure. Maximum pressures above/below 10 MPa increased porosity, which decreased in‐line transmission and increased backward/forward scattering. Lower densities at higher pressures are attributed to a pore‐swelling phenomenon. Increasing isothermal hold time decreased porosity, which increased in‐line transmission and reduced backward/forward scattering. Best optical properties with an in‐line transmission of 65.3% at 645 nm (0.8 mm thick) were achieved by hot‐pressing heat‐treated platelet alumina powder with a preload pressure of 0 MPa, maximum temperature of 1800°C, maximum pressure of 10 MPa, and an isothermal hold time of 7 hours. This high in‐line transmission, despite its large grain size (65 µm), is attributed to crystallographic orientation of the platelets during hot pressing.
000887815 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887815 588__ $$aDataset connected to CrossRef
000887815 7001_ $$00000-0002-0364-7227$$aCostakis, William J.$$b1
000887815 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b2
000887815 7001_ $$00000-0002-8685-0289$$aTrice, Rodney W.$$b3
000887815 7001_ $$00000-0002-8720-8642$$aYoungblood, Jeffrey P.$$b4
000887815 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.16932$$gVol. 103, no. 4, p. 2587 - 2601$$n4$$p2587 - 2601$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000887815 8564_ $$uhttps://juser.fz-juelich.de/record/887815/files/jace.16932.pdf$$yRestricted
000887815 8564_ $$uhttps://juser.fz-juelich.de/record/887815/files/A.Schlup_HP_transparent_platelet_Al2O3_JACERS_proof.pdf$$yPublished on 2019-11-27. Available in OpenAccess from 2020-11-27.
000887815 909CO $$ooai:juser.fz-juelich.de:887815$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b2$$kFZJ
000887815 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887815 9141_ $$y2020
000887815 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887815 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-29$$wger
000887815 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000887815 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000887815 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000887815 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887815 9801_ $$aFullTexts
000887815 980__ $$ajournal
000887815 980__ $$aVDB
000887815 980__ $$aUNRESTRICTED
000887815 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887815 981__ $$aI:(DE-Juel1)IMD-2-20101013