000887818 001__ 887818
000887818 005__ 20240711085632.0
000887818 0247_ $$2doi$$a10.1016/j.actamat.2020.08.027
000887818 0247_ $$2ISSN$$a1359-6454
000887818 0247_ $$2ISSN$$a1873-2453
000887818 0247_ $$2Handle$$a2128/28046
000887818 0247_ $$2WOS$$aWOS:000580631600063
000887818 037__ $$aFZJ-2020-04444
000887818 082__ $$a670
000887818 1001_ $$0P:(DE-HGF)0$$aVikrant, K. S. N.$$b0
000887818 245__ $$aElectrochemically-driven abnormal grain growth in ionic ceramics
000887818 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000887818 3367_ $$2DRIVER$$aarticle
000887818 3367_ $$2DataCite$$aOutput Types/Journal article
000887818 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625840979_1328
000887818 3367_ $$2BibTeX$$aARTICLE
000887818 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887818 3367_ $$00$$2EndNote$$aJournal Article
000887818 520__ $$aA combined theoretical and experimental analysis was performed to understand the effects of extrinsic ionic species and point defects on the microstructural evolution of ionic polycrystalline ceramics. The model naturally incorporates the effects of drag on grain boundary motion as imposed by the interfacially accumulated charged defects for Fe doped SrTiO3. Two moving grain boundary types, i.e., highly mobile and immobile interfaces result in abnormal grain growth. Fast moving grain boundaries leave a residual charge network behind in the interior of the grains in the form of bands of which in turn electrostatically attract oxygen vacancies, thus enhancing the local ionic conductivity of the polycrystal. Three grain size populations are statistically identified: (a) a normal grain population, as one would expect would happen in classical systems; (b) an abnormal, large grain population, which corresponds to those grains whose spatial extent is statistically greater than the average; and (c) an electrochemically persistent small grain size population that is stabilized by the grain boundary electrical energy. The study herein sets the stage to assess the effects of externally applied fields such as temperature, electromagnetic fields, stresses, and chemical stimuli to develop textured, oriented microstructures as tailored for a wide range of applications.
000887818 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887818 588__ $$aDataset connected to CrossRef
000887818 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b1$$ufzj
000887818 7001_ $$0P:(DE-HGF)0$$aSternlicht, Hadas$$b2
000887818 7001_ $$0P:(DE-HGF)0$$aBäurer, Michael$$b3
000887818 7001_ $$0P:(DE-HGF)0$$aGarcía, R. Edwin$$b4$$eCorresponding author
000887818 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2020.08.027$$gVol. 200, p. 727 - 734$$p727 - 734$$tActa materialia$$v200$$x1359-6454$$y2020
000887818 8564_ $$uhttps://juser.fz-juelich.de/record/887818/files/AGG.pdf$$yPublished on 2020-08-30. Available in OpenAccess from 2021-08-30.
000887818 8564_ $$uhttps://juser.fz-juelich.de/record/887818/files/Vik20a.pdf$$yRestricted
000887818 909CO $$ooai:juser.fz-juelich.de:887818$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b1$$kFZJ
000887818 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887818 9141_ $$y2020
000887818 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000887818 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887818 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887818 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000887818 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000887818 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887818 9801_ $$aFullTexts
000887818 980__ $$ajournal
000887818 980__ $$aVDB
000887818 980__ $$aUNRESTRICTED
000887818 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887818 981__ $$aI:(DE-Juel1)IMD-2-20101013