001     887818
005     20240711085632.0
024 7 _ |a 10.1016/j.actamat.2020.08.027
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a 2128/28046
|2 Handle
024 7 _ |a WOS:000580631600063
|2 WOS
037 _ _ |a FZJ-2020-04444
082 _ _ |a 670
100 1 _ |a Vikrant, K. S. N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Electrochemically-driven abnormal grain growth in ionic ceramics
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625840979_1328
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A combined theoretical and experimental analysis was performed to understand the effects of extrinsic ionic species and point defects on the microstructural evolution of ionic polycrystalline ceramics. The model naturally incorporates the effects of drag on grain boundary motion as imposed by the interfacially accumulated charged defects for Fe doped SrTiO3. Two moving grain boundary types, i.e., highly mobile and immobile interfaces result in abnormal grain growth. Fast moving grain boundaries leave a residual charge network behind in the interior of the grains in the form of bands of which in turn electrostatically attract oxygen vacancies, thus enhancing the local ionic conductivity of the polycrystal. Three grain size populations are statistically identified: (a) a normal grain population, as one would expect would happen in classical systems; (b) an abnormal, large grain population, which corresponds to those grains whose spatial extent is statistically greater than the average; and (c) an electrochemically persistent small grain size population that is stabilized by the grain boundary electrical energy. The study herein sets the stage to assess the effects of externally applied fields such as temperature, electromagnetic fields, stresses, and chemical stimuli to develop textured, oriented microstructures as tailored for a wide range of applications.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rheinheimer, Wolfgang
|0 P:(DE-Juel1)185039
|b 1
|u fzj
700 1 _ |a Sternlicht, Hadas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bäurer, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a García, R. Edwin
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.actamat.2020.08.027
|g Vol. 200, p. 727 - 734
|0 PERI:(DE-600)2014621-8
|p 727 - 734
|t Acta materialia
|v 200
|y 2020
|x 1359-6454
856 4 _ |y Published on 2020-08-30. Available in OpenAccess from 2021-08-30.
|u https://juser.fz-juelich.de/record/887818/files/AGG.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/887818/files/Vik20a.pdf
909 C O |o oai:juser.fz-juelich.de:887818
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185039
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-23
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2018
|d 2020-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2018
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-23
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21