000887819 001__ 887819
000887819 005__ 20240711085632.0
000887819 0247_ $$2doi$$a10.1038/s41524-020-00418-z
000887819 0247_ $$2Handle$$a2128/26470
000887819 0247_ $$2altmetric$$aaltmetric:93502091
000887819 0247_ $$2WOS$$aWOS:000583046000001
000887819 037__ $$aFZJ-2020-04445
000887819 082__ $$a004
000887819 1001_ $$0P:(DE-HGF)0$$aVikrant, K. S. N.$$b0
000887819 245__ $$aElectrochemical drag effect on grain boundary motion in ionic ceramics
000887819 260__ $$aLondon$$bNature Publ. Group$$c2020
000887819 3367_ $$2DRIVER$$aarticle
000887819 3367_ $$2DataCite$$aOutput Types/Journal article
000887819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607623735_20647
000887819 3367_ $$2BibTeX$$aARTICLE
000887819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887819 3367_ $$00$$2EndNote$$aJournal Article
000887819 520__ $$aThe effects of drag imposed by extrinsic ionic species and point defects on the grain boundary motion of ionic polycrystalline ceramics were quantified for the generality of electrical, chemical, or structural driving forces. In the absence of, or for small driving forces, the extended electrochemical grain boundary remains pinned and symmetrically distributed about the structural interface. As the grain boundary begins to move, charged defects accumulate unsymmetrically about the structural grain boundary core. Above the critical driving force for motion, grain boundaries progressively shed individual ionic species, from heavier to lighter, until they display no interfacial electrostatic charge and zero Schottky potential. Ionic p–n junction moving grain boundaries that induce a finite electrostatic potential difference across entire grains are identified for high velocity grains. The developed theory is demonstrated for Fe-doped SrTiO3. The increase in average Fe concentration and grain boundary crystallographic misorientation enhances grain boundary core segregation and results in thick space charge layers, which leads to a stronger drag force that reduces the velocity of the interface. The developed theory sets the stage to assess the effects of externally applied fields such as temperature, electromagnetic fields, and chemical stimuli to control the grain growth for developing textured, oriented microstructures desirable for a wide range of applications.
000887819 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887819 588__ $$aDataset connected to CrossRef
000887819 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b1$$ufzj
000887819 7001_ $$00000-0002-4983-604X$$aGarcía, R. Edwin$$b2$$eCorresponding author
000887819 773__ $$0PERI:(DE-600)2843287-3$$a10.1038/s41524-020-00418-z$$gVol. 6, no. 1, p. 165$$n1$$p165$$tnpj computational materials$$v6$$x2057-3960$$y2020
000887819 8564_ $$uhttps://juser.fz-juelich.de/record/887819/files/Vik20.pdf$$yOpenAccess
000887819 909CO $$ooai:juser.fz-juelich.de:887819$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b1$$kFZJ
000887819 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887819 9141_ $$y2020
000887819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000887819 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ COMPUT MATER : 2018$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ COMPUT MATER : 2018$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887819 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000887819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000887819 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887819 9801_ $$aFullTexts
000887819 980__ $$ajournal
000887819 980__ $$aVDB
000887819 980__ $$aUNRESTRICTED
000887819 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887819 981__ $$aI:(DE-Juel1)IMD-2-20101013