000887821 001__ 887821
000887821 005__ 20210130010643.0
000887821 0247_ $$2doi$$a10.1088/1748-0221/15/07/C07030
000887821 0247_ $$2WOS$$aWOS:000551901300030
000887821 037__ $$aFZJ-2020-04447
000887821 041__ $$aEnglish
000887821 082__ $$a610
000887821 1001_ $$0P:(DE-HGF)0$$aFöhl, K.$$b0
000887821 245__ $$aMuon radiography employing the DIRC principle for density change measurements under volcanoes and fluid reservoirs
000887821 260__ $$aLondon$$bInst. of Physics$$c2020
000887821 3367_ $$2DRIVER$$aarticle
000887821 3367_ $$2DataCite$$aOutput Types/Journal article
000887821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608129943_1985
000887821 3367_ $$2BibTeX$$aARTICLE
000887821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887821 3367_ $$00$$2EndNote$$aJournal Article
000887821 500__ $$aKein Post-print vorhanden
000887821 520__ $$aMapping the density distribution and monitoring density changes under volcanoes and geological reservoirs is a major challenge in geology and volcanology. Muon radiography has a high potential to advance this field, but often there are no inexpensive high-end detectors available that are suitable for field installations. A DIRC-type Cherenkov detector as a muon camera has a small dimension and is suited for such field applications (MagmaDIRC idea). In measuring directions and energies of the incoming muons one can turn the mass density integrals along the lines of flight into a radiography image, and by discarting low-energy muons with their blurred angular information one obtains sharper images. In particular one may detect the time variation of the mass density distributions situated above the horizon line in a volcanic edifice that occurs when magma is filling its plumbing system or when the level of a lava lake changes. Using numerical simulations, we discuss design aspects and the requirements of such a DIRC system. Two sites are identified for proof-of-principle field measurements. The required measurement times are estimated for the given site conditions and morphology based on the specifications of an operational DIRC system. The merits of DIRC sensors are contrasted to other muon radiography techniques.
000887821 536__ $$0G:(DE-HGF)POF3-612$$a612 - Cosmic Matter in the Laboratory (POF3-612)$$cPOF3-612$$fPOF III$$x0
000887821 536__ $$0G:(DE-HGF)POF3-632$$a632 - Detector technology and systems (POF3-632)$$cPOF3-632$$fPOF III$$x1
000887821 588__ $$aDataset connected to CrossRef
000887821 7001_ $$0P:(DE-Juel1)180740$$aDahm, T.$$b1
000887821 7001_ $$0P:(DE-Juel1)185827$$aDüren, M.$$b2$$ufzj
000887821 7001_ $$0P:(DE-Juel1)131167$$aGoldenbaum, F.$$b3$$ufzj
000887821 7001_ $$0P:(DE-Juel1)131172$$aGrzonka, D.$$b4$$ufzj
000887821 7001_ $$0P:(DE-Juel1)131301$$aRitman, J.$$b5$$eCorresponding author$$ufzj
000887821 7001_ $$0P:(DE-HGF)0$$aWalter, T.$$b6
000887821 773__ $$0PERI:(DE-600)2235672-1$$a10.1088/1748-0221/15/07/C07030$$gVol. 15, no. 07, p. C07030 - C07030$$n07$$pC07030 - C07030$$tJournal of Instrumentation$$v15$$x1748-0221$$y2020
000887821 8564_ $$uhttps://juser.fz-juelich.de/record/887821/files/F%C3%B6hl_2020_J._Inst._15_C07030-1.pdf$$yRestricted
000887821 909CO $$ooai:juser.fz-juelich.de:887821$$pVDB
000887821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185827$$aForschungszentrum Jülich$$b2$$kFZJ
000887821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131167$$aForschungszentrum Jülich$$b3$$kFZJ
000887821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131172$$aForschungszentrum Jülich$$b4$$kFZJ
000887821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131301$$aForschungszentrum Jülich$$b5$$kFZJ
000887821 9131_ $$0G:(DE-HGF)POF3-612$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vCosmic Matter in the Laboratory$$x0
000887821 9131_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector technology and systems$$x1
000887821 9141_ $$y2020
000887821 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger
000887821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INSTRUM : 2018$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000887821 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-25
000887821 920__ $$lyes
000887821 9201_ $$0I:(DE-Juel1)IKP-1-20111104$$kIKP-1$$lExperimentelle Hadronstruktur$$x0
000887821 980__ $$ajournal
000887821 980__ $$aVDB
000887821 980__ $$aI:(DE-Juel1)IKP-1-20111104
000887821 980__ $$aUNRESTRICTED