001     887821
005     20210130010643.0
024 7 _ |a 10.1088/1748-0221/15/07/C07030
|2 doi
024 7 _ |a WOS:000551901300030
|2 WOS
037 _ _ |a FZJ-2020-04447
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Föhl, K.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Muon radiography employing the DIRC principle for density change measurements under volcanoes and fluid reservoirs
260 _ _ |a London
|c 2020
|b Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608129943_1985
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print vorhanden
520 _ _ |a Mapping the density distribution and monitoring density changes under volcanoes and geological reservoirs is a major challenge in geology and volcanology. Muon radiography has a high potential to advance this field, but often there are no inexpensive high-end detectors available that are suitable for field installations. A DIRC-type Cherenkov detector as a muon camera has a small dimension and is suited for such field applications (MagmaDIRC idea). In measuring directions and energies of the incoming muons one can turn the mass density integrals along the lines of flight into a radiography image, and by discarting low-energy muons with their blurred angular information one obtains sharper images. In particular one may detect the time variation of the mass density distributions situated above the horizon line in a volcanic edifice that occurs when magma is filling its plumbing system or when the level of a lava lake changes. Using numerical simulations, we discuss design aspects and the requirements of such a DIRC system. Two sites are identified for proof-of-principle field measurements. The required measurement times are estimated for the given site conditions and morphology based on the specifications of an operational DIRC system. The merits of DIRC sensors are contrasted to other muon radiography techniques.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF3-612)
|0 G:(DE-HGF)POF3-612
|c POF3-612
|f POF III
|x 0
536 _ _ |a 632 - Detector technology and systems (POF3-632)
|0 G:(DE-HGF)POF3-632
|c POF3-632
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dahm, T.
|0 P:(DE-Juel1)180740
|b 1
700 1 _ |a Düren, M.
|0 P:(DE-Juel1)185827
|b 2
|u fzj
700 1 _ |a Goldenbaum, F.
|0 P:(DE-Juel1)131167
|b 3
|u fzj
700 1 _ |a Grzonka, D.
|0 P:(DE-Juel1)131172
|b 4
|u fzj
700 1 _ |a Ritman, J.
|0 P:(DE-Juel1)131301
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Walter, T.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1088/1748-0221/15/07/C07030
|g Vol. 15, no. 07, p. C07030 - C07030
|0 PERI:(DE-600)2235672-1
|n 07
|p C07030 - C07030
|t Journal of Instrumentation
|v 15
|y 2020
|x 1748-0221
856 4 _ |u https://juser.fz-juelich.de/record/887821/files/F%C3%B6hl_2020_J._Inst._15_C07030-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:887821
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185827
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131167
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131301
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Universum
|1 G:(DE-HGF)POF3-610
|0 G:(DE-HGF)POF3-612
|2 G:(DE-HGF)POF3-600
|v Cosmic Matter in the Laboratory
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-632
|2 G:(DE-HGF)POF3-600
|v Detector technology and systems
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-25
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INSTRUM : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-1-20111104
|k IKP-1
|l Experimentelle Hadronstruktur
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IKP-1-20111104
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21