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Abstract

In order to produce tailored ceramics with defined properties a deep knowl-
edge about the sintering process and especially the underlying microstructure
evolution is required. Due to the complex interplay of the material and pro-
cess parameters as well as complex geometries, it is challenging to predict the
microstructure evolution during sintering with analytical models. Especially
the phase-field method has been established as a versatile tool to investigate
microstructure evolution under the influence of various physical phenomena.
To describe the microstructural evolution during solid state sintering, a phase-
field model based on the grand potential approach considering volume, surface
and grain boundary diffusion is presented. To efficiently investigate realistic
green bodies with multiple thousand particles in three dimensions, the model is
implemented in a highly optimized manner in the massive parallel phase-field
solver framework Pace3D. By comparing the neck growth rates in a two parti-
cle system for the different diffusion mechanisms a good agreement to analytic
solutions is found. Based on a three dimensional green body of 24 897 grains
the densification depending on the dominant diffusion mechanisms is investi-
gated and compared with the analytic Coble model. Finally, the appearance of
isolated pores in the microstructure is observed.

Keywords: Phase-field model, solid state sintering, diffusion mechanisms,
Large-scale simulations, Microstructure analysis

1. Introduction

Ceramic materials have been manufactured by sintering process (’firing’)
for thousands of years, mostly in the field of pottery. Today, ceramics find
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to investigate the neck formation and densification[6–9]. The densification in
the intermediate stage is analyzed by Coble [10, 11] assuming an interconnected
pore channel network along the triple lines in which tetrakaidecahedronal grains
of fixed size and shape are embedded. With this model the densification can
be estimated, if parameters such as grain boundary energies and diffusion co-
efficients are known. Further grain growth and densification models for the
final sintering stage are published in [10–18]. Summaries of different analytical
approaches can be found in [3, 4, 19]. Although these models enable the inves-
tigation of the sintering process, they are of limited use for the understanding
of the microstructure evolution since they assume an idealized geometry. A
more general approach is the use of Herring’s scaling laws [20], which relate the
relative rate of sintering (e.g. neck growth or densification) to the size of the
particles and the dominant diffusion mechanism.

Besides these analytical approaches the phase-field method has been estab-
lished in the last decades as a powerful tool to study the microstructure evolution
under the influences of various physical phenomena [2]. Early phase-field mod-
els considering a single pore in a polycrystal are derived in [21, 22]. Phase-field
models to investigate two particle systems are developed in [23–31]. Simula-
tions of green bodies for 2D domains are conducted in [23, 25, 28, 29, 32, 32]
and for 3D domains in [33]. In contrast to the previously developed models a
grand potential approach based on [34–36] is used to investigate the microstruc-
ture evolution for all three sintering stages. To describe the different diffusion
mechanisms, an approach similar to [23, 25] is developed. The locally reduced
order parameter approach of Kim et al. [37] is implemented in the Pace3D

solver [38] to allow the modelling of large three-dimensional powder compacts
consisting of multiple thousands particles. With this combined approach, this
paper investigates the influence of different diffusion mechanisms on sintering
and densification in realistic powder compacts.

2. Phase-field model for solid state sintering

In this section the model is defined and the evolution equations for the
phase-fields and the chemical potentials are derived. Based on this, in the
next section different optimizations to reduce the memory requirements and the
computational effort in the case of a large number of order parameters in the
Pace3D framework are introduced.

2.1. Derivation of the phase-field equation

For the model the domain Ω ⊂ R
d with d ∈ {1,2,3} is considered. The

N different phases are labelled with the indices α, β and γ. To distinguish
between the N − 1 grain phases and the surrounding vapor phase, the addi-
tional labels grain1 to grainN−1 and vap are introduced. The local thermody-
namic state of these phases (e.g. phase fractions, orientation) at the position
x ∈ Ω and the time t ∈ R is described by the order-parameters φα(x, t) [36, 39]
which is twice continuously differentiable in space. The order-parameters are
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collected in the phase-field vector φ ∶ Ω → ∆N−1 with the simplex ∆N−1 ={φ1e1 +Ȃ+ φNeN ∣ φα ≥ 0 ∧∑N
α=1 φα = 1} and the basis vectors eα of a Carte-

sian coordinate system.
In order to model the total energy of the system, the grand potential func-

tional Ψ of the form

Ψ(φ,µ, T ) = ∫
Ω
Υ(φ,∇φ) + ψ(φ,µ, T )dΩ (1)

with the diffuse interface contribution Υ(φ,∇φ) and the driving force ψ(φ,µ, T )
is used. The functional depends on the phase-field vector φ, the chemical po-
tential vector µ and the temperature T .

The diffuse interface contribution is written as

Υ(φ,∇φ) = εa(φ,∇φ) + 1

ε
ω(φ) (2)

with the gradient energy term a(φ,∇φ), the potential energy term ω(φ) and
the parameter ε, which is related to the interface thickness [40]. The gradient
energy term is formulated as

a(φ,∇φ) = N,N∑
α,β=1
(α<β)

γαβ[aαβ(�qαβ)]∣�qαβ ∣2 . (3)

Here, γαβ represents the interface energy density and �qαβ = φα∇φβ − φβ∇φα
is the generalized gradient vector. In the case of isotropic systems, anisotropy
function aαβ(�qαβ) is equal to 1. The generalized obstacle type potential energy
term is derived as

ω(φ) =
̂̂̂̂̂
̂̂̂
̂̂̂̂̂̂
̂

16

π2

N,N∑
α,β=1
(α<β)

γαβφαφβ + N,N,N∑
α,β,δ=1
(α<β<δ)

γαβδφαφβφδ ,φ ∈∆N−1

∞ ,φ ∉∆N−1

. (4)

The higher order term γαβδ in (4) suppresses spurious contributions of third
phases in the binary interfaces as discussed in detail in [40, 41].

To describe the driving force for the phase transformations, the differences in
the grand potentials of the phases are used. These are derived from experimen-
tally determined Gibbs energies which are stored in thermodynamic databases
(i.e. Calphad). For an efficient calculation of the driving forces, the Gibbs
energies are formulated as approximated parabolic functions of the form

gα(c, T ) = K−1∑
i=1

K−1∑
j=1
i≤j

Aα
ij(T ) cicj +K−1∑

i=1

Bα
i (T ) ci +Cα(T ) (5)

with the temperature dependent fitting constants Aα
ij , B

α
i and Cα for each phase
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α and for the components i and j.
Based on Gibbs energies gα of the N phases, the K concentrations c and the

N ×K chemical potentials µ can be determined. Following [42], all phases in
equilibrium have the same chemical potential and hence the number of N ×K
chemical potentials can be reduced to K. From this, subsequently the driving
forces for phase transitions can be calculated as

ψ(φ,µ, T ) = N∑
α=1

(gα (cα(µ, T ), T ) − K∑
i=1

µic
α
i (µ, T ))hα(φ) . (6)

To interpolate the driving forces, the function

hα(φ) = φ2α ̂̂
N∑
β=1

φ2β
̂
̂
−1

(7)

from [43] is used.
The evolution equations for the N order parameters are derived from the

grand potential functional (1) by using the Allen-Cahn approach as

τǫ
∂φα

∂t
= − ∂Υ(φ,∇φ)

∂φα
+∇ ⋅ ∂Υ(φ,∇φ)

∂∇φα
−
∂ψ(φ,µ, T )

∂φα´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δΨ

δφα

+λ . (8)

The kinetic coefficient τ is defined as

τ = N,N∑
α,β=1
(α<β)

ταβφαφβ

̂̂
̂̂
̂

N,N∑
α,β=1
(α<β)

φαφβ

̂̂
̂̂
̂

−1

(9)

with the reciprocal mobility ταβ of the interface between the phases α and β.

The Lagrange multiplier λ = 1
N ∑N

α=1
δΨ/δφα is introduced following [41] to ensure

the constraint ∑N
α=1

∂φα/∂t = 0.
2.2. Derivation of the chemical potential equation

The mass conservation and the different diffusion paths are described by a
concentration model based on Fick’s Laws:

∂c

∂t
= ( ∂c

∂µ
)
T,φ

∂µ

∂t
+ ( ∂c

∂φ
)
T,µ

∂φ

∂t
+ ( ∂c

∂T
)
µ,φ

∂T

∂t

= ∇ ⋅ (M(φ, T )∇µ) . (10)

Following [34–36], the evolution of the chemical potentials is used to effi-
ciently calculate the coupled evolution of concentrations and phase-fields. By
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reordering eq. (10) the evolution equations for the K chemical potentials can be
written as:

∂µ

∂t
= [ N∑

α=1

hα(φ)(∂cα(µ, T )
∂µ

)]
−1

̂
̂∇ ⋅ (M(φ,µ, T )∇µ)

−

N∑
α=1

cα(µ, T )∂hα(φ)
∂t

−

N∑
α=1

hα(φ)(∂cα(µ, T )
∂T

) ∂T
∂t

̂
̂. (11)

The concentrations and the derivatives for ∂cα(µ,T )/∂µ as well as ∂cα(µ,T )/∂T are
derived from the approximated parabolic Gibbs energies. In isothermal systems
the last term is zero. The mobility function M(φ,µ, T ) describing the diffusion
mechanisms is modeled similar to [25] and [23].

For solid state sintering, the diffusion mechanisms can be divided into vol-
ume, grain boundary and surface diffusion [3]. The different diffusion paths are
exemplary depicted in Fig. 2 b) for an idealized two particle setting. The plot
in Fig. 2 a) shows the diffusion coefficient as well as the phase-field values of the
grains along a cut through both particles.

A tensor of third order D = Di,α,β with the dimension K ×N ×N is used in
this work to describe the different diffusion mechanisms. This diffusion tensor
D can be divided into three parts

D =D
vol
+D

gb
+D

surf , (12)

with the volume diffusionDvol, the grain boundary diffusionDgb and the surface
diffusion Dsurf being defined by

D
vol
∶= Di,α,β=α (13)

D
gb
∶= Di,α≠vap,β≠α (14)

D
surf
∶= Di,α≠β,β=vap (15)

with vap as the label for the atmospheric phase surrounding the particles in the
green body. All other elements in the third order tensors Dvol, Dgb and Dsurf

are zero. For each component a symmetric diffusion matrix of the form

Di =

̂̂̂
̂̂̂
̂̂̂
̂̂

Di,1,1 Di,2,1 . . . Di,N−1,1 Di,N,1Di,2,2 Ȃ ⋮
⋮

Ȃ Di,N−1,N−2Di,N−1,N−1 Di,N,N−1Di,N,N

̂
̂
̂
̂
̂
̂
̂
̂
̂
̂
̂

(16)
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where the inverse curvature of the Gibbs free energies is interpolated linearly
with the phase-field in the case of boundary diffusion. The interpolation function
is given by h∗α(φ) = φα.
3. Implementation and Optimization

The model is implemented in the massive parallel Pace3D framework (“Par-
allel Algorithms for Crystal Evolution in 3D”) [38]. The evolution equations (8)
and (11) are discretized in space with a finite difference scheme and in time
with an explicit Euler method similar to [39, 40]. The discretized functions
are implemented as sweeps [44] and explicitly vectorized using AVX2 intrinsics.
The sweeps are optimized using node level performance engineering techniques,
buffering techniques [39] and performance measuring tools like the Intel archi-
tecture code analyzer (IACA) [45], the lightweight performance-oriented tool
suite for x86 multicore environments (LIKWID) [46] and the Roofline model
[47, 48] to efficiently exploit current HPC hardware.

To reduce the memory requirements for the calculation of an arbitrary num-
ber of phases, the concept of Kim et al. [49] with a local reduction of the
order-parameter is used. Additionally, a class based concept for the material
parameters is introduced. All phases with the same material parameters are
collected in one class. With this the parameter matrices which depend on the
size of the phase-field vector N can be reduced for the considered system Al-O
to the two classes Al2O3 and O2. With this, e.g. the interface energy matrix is
reduced from N ×N entries to 2 × 2 entries.

The voxel data is read and written in Pace3D with MPI-IO. Additionally,
to reduce the simulation data the iso-surface of the grain structure is efficiently
written as mesh data using multiple master processes [38].

4. Material Parameters

For the simulations of the sintering process, the material system Al-O with
its solid phase γ-Al2O3 is used as there is a multitude of experimental data
available [50–53]. The powder compacts were assumed to sinter in an oxygen
atmosphere. The interface energies between solid and gas are derived from [50].
The ratio of the solid-solid interfacial energy to the solid-gas interfacial energy
was assumed to be 5/6. The diffusion coefficient Dv for the volume diffusion in
Al2O3 is obtained from [52]. The diffusion coefficients in the grain boundary
and surface are set to Dgb = 1000 ⋅ Dv and Dsurf = 1000 ⋅ Dv. In order to
avoid timescale problems and to reduce the computational effort, the diffusion
coefficient in the gas is chosen to Dgas = 0.5 ⋅Dv, similar to [54]. The kinetic
coefficient τ is derived based on [35]. The dimensionless simulation parameters
and their physical values are summarized in Table 1.

In order to simulate the system Al-O, the Gibbs energies are modeled based
on the Calphad-database from Hashimoto and co-workers [55]. The database
is published by the National Institute for Material Science (NIMS) of Japan and
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Figure 3: Phase diagram of Al-O generated from Calphad-database [53, 55] (blue solid lines)
and recalculated phase diagram from approximated parabolic Gibbs energy functions of the
phases Al2O3 and vap (red dashed lines).

bases on experimental data from Lee and Saunders [53]. From this database,
approximated parabolic functions at the operating temperature are derived for
each phase class as described in [56, 57] to reduce the computational effort. For
the binary system Al-O, the general approach of equation (5) can be reduced to

gα(cO, T ) = Aα(T ) c2O +Bα(T )cO +Cα(T ) (18)

with cO as the concentration of oxygen. To reproduce the stoichiometric char-
acter of the grain phases Al2O3 and the vapour phase vap the equilibrium
concentrations are set to temperature-independent values. Further the fitted
coefficients Bα(T ) and Cα(T ) are modelled with a quadratic temperature de-
pendence. The adjustable parameter Aα is chosen to ensure that the phases
Al2O3 and vap can be reproduced with their correct stoichiometric composition
for a wide temperature range as shown in Fig. 3 for the considered part of the
phase diagram of Al-O. Thus the approximated Gibbs energy functions can be
written as

gα(cO, T ) = Aα c2O + (Bα
3 T

2 +Bα
2 T +Bα

1 )cO +Cα
3 T

2 +Cα
2 T +Cα

1 . (19)
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Table 1: Summary of the dimensionless simulation parameters and their values in physical
units for Al-O.

parameter simulation value physical value source

Numerical parameters

∆x 1 50nm -

∆t
0.0211 52.75�s volume diffusion
0.0125 31.25�s boundary diffusion

ǫ 3 ⋅∆x 150nm -
γαβδ 80 derived based on [40]
Physical parameters

D
vol
grain 0.01 1 × 10−14 m2/s [52]

D
vol
vap 0.005 0.5 × 10−14 m2/s -

D
gb 10 1 × 10−11 m2/s -

D
surf 10 1 × 10−11 m2/s -

T 1 1708.15K -
cAl2O3

[cO, cAl] 0.6, 0.4 60, 40 mol-% [53, 55]
cvap [cO, cAl] 0.99, 0.01 99, 1 mol-% [53, 55]
γgrains,vap 4 0.8 J/m2 γ-Al2O3 from [50]

γ [
phase classes grains vap

grains 5/6 1
vap 1 −

] ⋅ γgrains,vap -

Gibbs energy parameters of eq. (18) at temperature T = 1708.15K
Avap 10 1000 kJ/mol chosen for stoichiometry
Bvap

−20.95 −2095 kJ/mol calculated from [53, 55]
Cvap 6.632 663.2 kJ/mol calculated from [53, 55]
Agrains 50 5000 kJ/mol chosen for stoichiometry
Bgrains

−61.16 −6115 kJ/mol calculated from [53, 55]
Cgrains 14.83 1483 kJ/mol calculated from [53, 55]
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5. Results

In the following section the model is qualitatively and quantitatively vali-
dated by using a two particle setting in 2D and 3D based on [3, 23, 58]. Subse-
quently, 3D simulations of realistic green-bodies with different active diffusion
mechanisms are investigated.

5.1. Simulation of the two particle case

In the initial sintering stage, necks form between the particles [59]. Depend-
ing on the dominant diffusion mechanism the rate at which these necks grow
changes. To validate the derived phase-field model, the neck radius evolution
from the simulations is compared to analytical equations.

The simulation setting for the two particle system is schematically shown in
Fig. 2. As boundary conditions, for both evolution equations, no flux conditions
are used. The particle radius was chosen to be 2.5�m = 50 cells. As initial con-
ditions the equilibrium concentrations of the respective phases are used. The
material parameters used for the simulations are given in Table 1. Systematic
studies with (de)activated volume diffusion Dv, grain boundary diffusion Dgb

and surface diffusion Ds are conducted. Therefore, the two-particle simulations
TPv, TPv+gb, TPv+s and TPv+gb+s, labelled by the activated diffusion mecha-
nisms, are considered.

Fig. 4 shows the evolution for different sets of active diffusion mechanisms.
The contour lines of the grain-gas interface are depicted at four different time
steps.

@All: [W: the weird thing here is that GB diffusion (or volume diffu-
sion in the vicinity of the GB) is NEEDED to get densification, while sur-
face diffusion only will result in coarsening, but not in densification. What
you in principle do in here is that you add faster diffusion as you add ad-
ditional diffusion mechanisms. Since the phase field model is a diffuse in-
terface model, there is no such thing as pure GB or surface diffusoin or as
pure volume diffusion. All you can do is enhancing the diffusion at a spe-
cific location. Having said that it is somewhat unexpected that, for GB+V,
the evolution is allmost the same as only for V and no densification occurs,
while for whenever S is involved, quite some densification occured. This
needs to be commented somehow in the manuscript. Could it be that this is
just because of the high relative GB energy (relative to the surface energy),
so that the driving force situation is the problem? [M+J: Hierüber sollten
wir nochmal über die anmerkung auf Seite 15 reden weil wir das etwas an-
ders sehen]

As expected, the neck evolutions are influenced by the dominant diffusion
mechanism. The simulations with activated surface diffusion evolve faster than
the others. Due to the dominance of the surface diffusion a similar evolution
is observed in the simulations TPv+s and TPv+gb+s. As a result of the slower
neck evolution compared to the simulations with surface diffusion, the contour
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lines in the simulations TPv and TPv+gb are still close together. However, the
evolution of TPv+gb is faster than the evolution of TPv.

For all cases, densification is observed since volume diffusion in the vicinity
of the grain boundary occurs. In the case of active grain boundary diffusion,
the enhanced diffusion coefficient is constricted to the grain boundary. Due to
the lower gradients of the concentration along the grain boundary in contrast
to the surface, the driving forces for the mass transport are multiple orders of
magnitude smaller. Only close to the triple point there are similar driving forces
for mass flux as on the surface. Hence the densification for TPv+gb is similar to
TPv and smaller than in the simulations with active surface diffusion.

To highlight this combination of local driving force and the enhanced dif-
fusion coefficient, the mass flux for the four settings is shown for exemplary
states in Fig. 5. Note that the scales and shown simulation times are different
in each depicted simulation in order to highlight the dominant fluxes. Hence,
only in TPv and TPv+gb the flux in the bulk is visible due to the overall lower
magnitude of the fluxes. For all simulations the neck region is the global sink
for diffusion, although different pathways depending on the dominant diffusion
mechanism are used. Due to the chosen value for bulk gas diffusion, evaporation
and condensation occur as visible in Fig. 5, however, their contribution is minor.
In the simulations with activated surface diffusion, the evolution is dominated
by the fluxes along the surface. The effect of grain boundary diffusion is most
evident for TPv+gb, whereas in the other simulations the evolution is dominated
by surface diffusion or volume diffusion. Both investigations, i.e. on the particle
shape evolution and the fluxes, show the expected qualitative behavior for the
different simulations.

Following Wang [23], the relative neck radius X/r over time t for two adjacent
spheres can be quantitatively described by the power law

X(t)/r = A(γ, r) ⋅ tn . (20)

The pre-exponential factor A depends on the surface energy γ and the radius
r of the sphere whereas the exponent n depends on the dominant diffusion
path. Based on the analysis in [3, 23] the expected exponents for volume,
grain boundary and surface diffusion are 1/5 = 0.2, 1/6 ∼ 0.17 and 1/7 ∼ 0.14,
respectively. A quantitative analysis of the neck growth kinetics using equation
(20) is summarized in Fig. 6. In all diagrams the relative neck radius is plotted
logarithmically over time.

For constant particle sizes, the impact of the different diffusion mechanisms
in two-dimensional simulations is shown in Fig. 6(a). The neck growth slope (i.e.
the exponent in eq. (20)) is in accordance with the theoretical predictions. Sim-
ilar agreement between theoretical predictions and simulation results is found
for the three-dimensional simulations as depicted in Fig. 6(b).

Furthermore, the influence of the particle size on the sintering behavior
is investigated for the setting TPv+s. For different particle sizes ri, Herring’s
scaling law for surface diffusion controlled growth [20] predicts that the sintering
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rates scale as
Ẋ1/r1
Ẋ2/r2 =

r1

r2

−4
. (21)

By normalizing the time with r−4i all sintering curves collapse to a single master
curve as shown in Fig. 6(c). Therefore the scaling law holds for the present
simulations. Accordingly the slope in Fig. 6(c) is also the same for all particle
radii. The same slope of approximately 1/7 as well as scaling behavior is also
found by Pino [60] with a level-set model and by Kumar [54] with a phase-field
model using similar ratios of volume diffusivity to boundary diffusivity.

For increasing particle radii, the distances for the fluxes along the surface
increase and the driving force decreases due to the lower curvature. Hence a
transition from surface diffusion to volume diffusion as the dominant mechanism
of sintering is expected with increasing particle size [10, 11].

@All: [CITE:COBLE [M+J: Draus ableiten läasst es sich, aber es steht
nicht explizit drin]

To evaluate this transition in computationally efficient domain sizes, the
surface diffusivity was reduced by a factor of 200 to Ds = 5 ⋅Dv with the particle
radii ranging from 0.83�m to 12.50�m. The results of this study for the setting
TPv+s are summarized in Fig. 6(d). As evident from the slopes of the curves, for
a particle size of 0.83�m the evolution is dominated by surface diffusion, whereas
with increasing particle size the volume component becomes more dominant
until at a size of 12.50�m the evolution is mostly dominated by volume diffusion.

In summary, both the neck growth kinetics of the different diffusion scenarios
and the dependence of the dominant diffusion mechanism on the particle size
agree well with theoretical expectations. Accordingly, we can conclude that the
two particle case is qualitatively and quantitatively reproduced in the presented
simulations.

5.2. Simulation of the many-particle case

Based on the qualitative and quantitative accordance with theoretical mod-
els, large scale phase-field simulations of realistic green bodies with multiple
thousand particles are conducted. With these simulations, the effect of varying
active diffusion mechanisms on the densification is investigated. The green body
with an initial density of 63.8% is generated with the physics engine nphysics
[61] using spherical particles with a radius of 7 cells (0.35�m). For all simula-
tions a domain size of 400 × 400 × 400 voxel cells with 24897 particles is used,
with the initial packing shown in Fig. 7. No flux conditions are used as bound-
ary conditions for both evolution equations. The simulations are calculated on
the Hazel Hen supercomputer [62] using 1083 cores for 50 hours, calculating 10
million time steps.

Similar to the two particle settings, the different diffusion mechanisms are
systematically (de)activated. This leads to four many-particle simulations MPv,
MPv+gb, MPv+s and MPv+gb+s labelled by the activated diffusion mechanisms.
To inhibit grain growth for easier comparison to the Coble model, the kinetic
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Figure 7: Initial green body with 24897 spherical particles in a 400 × 400 × 400 voxel cells
domain.

coefficient τ is adjusted. Additionally, the ratio of interface energies is changed
from 5/6 to 1/3 in order to achieve faster sintering kinetics and hence reduce
the computational effort. Furthermore, these two changes of the parameters in
Table 1 allow to increase the stable timestep calculated with the von Neumann
stability analysis [63] for the simulation MPv, from 52.75�s to 877�s. In Fig. 8
the microstructure evolutions of the four simulations at three time steps are
shown. On the left, the final green bodies with the cutting planes are depicted.
On the right, the corresponding two dimensional cuts illustrate the microstruc-
tural evolution. Starting from the loosely packed green body, the particles form
sintering necks between each other. Later on, the green body starts to densify.
With more activated diffusion mechanisms, as expected, the densification of the
green bodies is faster.

To quantitatively analyze the microstructure evolution, the density over time
is plotted in Fig. 9. This density is determined by applying a line-intercept anal-
ysis on the envelope of the grain phases. The analysis is done separately in each
dimension and the average is calculated. For all simulations, the densification
curve follows the characteristic sigmoidal shape [3]. The densification rate de-
creases in the sequence

MPv+gb+s >MPv+s >MPv+gb >MPv. (22)

However, for the considered simulation time none of the simulations have
reached full density, and open pore channels as well as isolated pores remain
in the sintered body. It is expected that if the simulations were continued,
complete densification would be reached.
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Furthermore, in dashed lines the analytical solutions of the Coble models [3]

ρ̇v(t) = 10DvγVm

RTG3
(23)

ρ̇b(t) = 4/3DbδbγVm

RTG4
√((1 − ρb(t)) (24)

for volume diffusion ρv and grain boundary diffusion ρb are shown for constant
grain size G and the used simulation parameters. Within the equation, Dv is
the volume diffusion coefficient, γ is the grain-vapor interface energy, Vm is the
molar volume of alumina, R is the ideal gas constant, T is the temperature, Db

is the grain boundary diffusion coefficient and δb is the thickness of the grain
boundary diffusion layer. The analytical solutions have a similar time scale as
well as a similar trend as the corresponding simulations. Initially both solutions
match closely, whereas for later times, the analytical solutions predict a higher
densification rate. This deviation can be explained by the geometric differences.
The Coble model assumes a network of equally-sized open pore channels in which
14-faced grains of equal size are embedded. However, the initial green body is
not based on the Coble geometry and also does not evolve to such a geometry.
Furthermore, Coble’s analysis only considers the intermediate stage of sintering,
where the pore channels still form a network. As soon as the pores are isolated,
a significant deviation from Coble’s equations is to be expected.

@All: evtl. weiter beschreiben und entscheiden, ob Coble rein soll [w: was
genau meint ihr mit Coble? Habt ihr eine entsprechende analyse gemacht?
wie sieht die aus?] [M+J: extended above with figure]

The evolution of isolated pores is exemplary depicted in Fig. 10 for the simu-
lations MPv+s and MPv+gb+s, to show the effect of grain boundary diffusion. The
isolated pores are depicted in green. To highlight the mass flux, a representative
slice is added showing the relative amount of flux as well as arrows to indicate
the flux direction. Since grain boundary diffusion is inactive in Figs. 10(a)
and 10(b), the majority of the mass flux occurs along the surface. However the
shrinkage rate is limited due to the lack of a quick diffusion pathway as only
volume diffusion can transport mass towards the pore, even though small pores
with few neighbours shrink due to energy minimization. In contrast, Figs. 10(c)
and 10(d) illustrate the flux being directed towards the pore for active grain
boundary diffusion. Herein, the shrinkage of pores is more pronounced since
the driving force has a quick diffusion pathway along the grain boundary avail-
able. Furthermore, a part of the large pore splits off due to local pinch-off.

@All: [W: ich kann das nicht im bild sehen] [M+J]: bild update]
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@All: [W: vorsicht - es gibt grundsätzliche überlegungen zur stabilität von
poren, welche nur von der Form abhängen und nicht von diffusionsmecha-
nismen. Siehe im rahaman auf seite 592] [M+J: okay, aber wir wollten hier
nicht weiter auf poren an sich eingehen, nur das wir welche sehen und auch
verschwinden können]
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3D final state t = 79.1 s t = 25.3min t = 87.5min
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Figure 8: On the left, the final three-dimensional microstructures. In red the cutting planes
for the time evolution are highlighted. On the right, the microstructural evolution over time
for the different activated diffusion mechanisms is shown. Gray areas depict grains which are
separated by black grain boundaries, whereas white areas depict the vapor phase. Due to the
different time scales, the simulation results using only volume diffusion are shown for other
physical times.
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(a) Pores in MPv+s at t (b) Pores in MPv+s at t + n∆t

(c) Pore in MPv+gb+s at t
′

(d) Pores in MPv+gb+s at t
′

+ n∆t

Figure 10: Evolution of pores (green) with and without grain boundary diffusion. Further-
more, a slice through the domain is selected to highlight the magnitude of the mass flux. The
mass flux increases from blue over white to red within the slice with the arrows being scaled
with the magnitude. The arrows additionally demonstrate the direction of mass flux within
the slice. In the simulation MPv+s, the majority of the mass flux occurs along the surface.
As the surface of the isolated pore is separated from the rest of the vapor phase, there is no
quick kinetic pathway for mass transport to the pore, hence the shrinkage rate is limited. In
contrast, MPv+gb+s shows the vanishing of a small pore as well as a larger pore splitting due
to the mass flux being directed towards the pores along the grain boundaries.
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6. Conclusion

In this work, a novel model for sintering using the grand potential approach
combined with different diffusion pathways has been developed and implemented
efficiently in the multi-physics Pace3D framework. Using this model, the results
of two-particle setting simulations are compared with the theoretical predictions
in two and three dimensions. Afterwards large-scale phase-field simulations of
a realistic green body are conducted.

In these simulations the densification rate decreases in the following order:
MPv+gb+s > MPv+s > MPv+gb > MPv . Furthermore the appearance of isolated
pores was observed in the large-scale simulations. The lifetime of the isolated
pores is mainly dependent on whether grain boundary diffusion is active or not.
From the results, we draw the following conclusions:

(i) The neck radius evolution in the two particle setting is in quantitative
accordance with the theory for different active diffusion mechanisms in
2D and 3D.

(ii) Furthermore Herring’s scaling law for surface diffusion applies in the two
particle setting.

(iii) The present model contains the transition from a surface diffusion domi-
nated process to a volume diffusion dominated process.

(iv) The region of major mass flux changes, depending on the dominant diffu-
sion mechanism.

(v) Isolated pores appear in large-scale simulations which indicates that they
freely evolved during the sintering process without being present in the
model or in the initial setup.

(vi) Due to the observed correlation between grain boundary diffusion and
pore stability, it can be concluded that the presented model can be used
to investigate the evolution of pores in a qualitative manner.

Based upon these observations and conclusions, the presented model is capa-
ble for the usage in further investigations. In future works, the effects of initial
conditions as well as material and process parameters on the densification, grain
growth and pore evolution during the sintering process are of special interest.
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