000887827 001__ 887827
000887827 005__ 20240711085632.0
000887827 0247_ $$2doi$$a10.1016/j.actamat.2019.05.040
000887827 0247_ $$2ISSN$$a1359-6454
000887827 0247_ $$2ISSN$$a1873-2453
000887827 0247_ $$2Handle$$a2128/26482
000887827 0247_ $$2altmetric$$aaltmetric:60995126
000887827 0247_ $$2WOS$$aWOS:000474501300010
000887827 037__ $$aFZJ-2020-04453
000887827 082__ $$a670
000887827 1001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b0$$eCorresponding author
000887827 245__ $$aNon-Arrhenius grain growth in strontium titanate: Quantification of bimodal grain growth
000887827 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000887827 3367_ $$2DRIVER$$aarticle
000887827 3367_ $$2DataCite$$aOutput Types/Journal article
000887827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607627697_9301
000887827 3367_ $$2BibTeX$$aARTICLE
000887827 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887827 3367_ $$00$$2EndNote$$aJournal Article
000887827 520__ $$aStrontium titanate is well-known for its non-Arrhenius grain growth, where grain growth coefficients decrease by orders of magnitude between 1350 °C and 1425 °C. This transition is assumed to be caused by the existence and coexistence of two grain boundary types and results in the formation of bimodal microstructures. So far, no quantified data on the transition behavior was available. The present study uses a comparison of experimental microstructures for various heating times and temperatures with simulated microstructures from phase-field simulations considering various fractions of fast-growing grains. The microstructures are compared by means of their grain size distributions. It is found that the fraction of fast-growing grains follows an anti-Arrhenius behavior. Evaluating the present findings with respective literature data, the grain growth transition could be related to a space charge transition where the fast and slow grain boundaries are associated with strong and weak space charge and segregation. Overall, the present study sheds light on general grain growth transitions observed in several perovskite ceramics.
000887827 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887827 588__ $$aDataset connected to CrossRef
000887827 7001_ $$00000-0001-6821-7263$$aSchoof, Ephraim$$b1
000887827 7001_ $$0P:(DE-HGF)0$$aSelzer, Michael$$b2
000887827 7001_ $$0P:(DE-HGF)0$$aNestler, Britta$$b3
000887827 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b4
000887827 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2019.05.040$$gVol. 174, p. 105 - 115$$p105 - 115$$tActa materialia$$v174$$x1359-6454$$y2019
000887827 8564_ $$uhttps://juser.fz-juelich.de/record/887827/files/Rhe19a.pdf$$yRestricted
000887827 8564_ $$uhttps://juser.fz-juelich.de/record/887827/files/manuscript.pdf$$yPublished on 2019-05-22. Available in OpenAccess from 2020-05-22.
000887827 909CO $$ooai:juser.fz-juelich.de:887827$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b0$$kFZJ
000887827 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887827 9141_ $$y2020
000887827 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000887827 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887827 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887827 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000887827 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000887827 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887827 9801_ $$aFullTexts
000887827 980__ $$ajournal
000887827 980__ $$aVDB
000887827 980__ $$aUNRESTRICTED
000887827 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887827 981__ $$aI:(DE-Juel1)IMD-2-20101013