000887829 001__ 887829
000887829 005__ 20240711085554.0
000887829 0247_ $$2doi$$a10.1002/celc.201901068
000887829 0247_ $$2Handle$$a2128/26486
000887829 0247_ $$2altmetric$$aaltmetric:65812048
000887829 0247_ $$2WOS$$aWOS:000485947800030
000887829 037__ $$aFZJ-2020-04455
000887829 082__ $$a540
000887829 1001_ $$0P:(DE-HGF)0$$aXu, Pengyu$$b0
000887829 245__ $$aOrigin of High Interfacial Resistances in Solid‐State Batteries: Interdiffusion and Amorphous Film Formation in Li 0.33 La 0.57 TiO 3 /LiMn 2 O 4 Half Cells
000887829 260__ $$aWeinheim$$bWiley-VCH$$c2019
000887829 3367_ $$2DRIVER$$aarticle
000887829 3367_ $$2DataCite$$aOutput Types/Journal article
000887829 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607628664_4421
000887829 3367_ $$2BibTeX$$aARTICLE
000887829 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887829 3367_ $$00$$2EndNote$$aJournal Article
000887829 520__ $$aThe large interfacial resistance between electrolyte and electrodes poses a significant roadblock for the application of all‐solid‐state batteries. The formation of interfacial phases (interphases) has been identified as one of the most significant sources for such high resistance. Therefore, studying the mechanism of interphase formation, along with investigating its effect on ionic conductivity, could lead to the discovery of avenues towards designing high‐performance all‐solid‐state batteries. In this work, we studied the interphase formation in the perovskite electrolyte Li0.33La0.57TiO3 (LLTO) and spinel cathode LiMn2O4 (LMO) pair by co‐sintering experiments via spark plasma sintering (SPS), as well as conventional sintering. Although the processing method has an influence on the electrode/electrolyte contact, the formation of an interphase could not be avoided. At the LLTO/ LMO interface, we observed both an interphase formed by interdiffusion, as well as a complexion‐like amorphous layer. We directly characterized the complexion layer morphology by using HRTEM. Analytical TEM and SEM were used to reveal the elemental composition of the interphase and the interdiffusion layer. Furthermore, we used impedance spectroscopy to measure the electrical properties of the LLTO/LMO interphase and identified the interfacial resistance from the interdiffusion induced interphase to be larger than the individual phases by a factor of 40, whereas the amorphous layer was not visible in the impedance.
000887829 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887829 588__ $$aDataset connected to CrossRef
000887829 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b1$$ufzj
000887829 7001_ $$0P:(DE-HGF)0$$aShuvo, Shoumya Nandy$$b2
000887829 7001_ $$0P:(DE-HGF)0$$aQi, Zhimin$$b3
000887829 7001_ $$0P:(DE-HGF)0$$aLevit, Or$$b4
000887829 7001_ $$0P:(DE-HGF)0$$aWang, Haiyan$$b5
000887829 7001_ $$0P:(DE-HGF)0$$aEin‐Eli, Yair$$b6
000887829 7001_ $$00000-0001-6059-0346$$aStanciu, Lia A.$$b7$$eCorresponding author
000887829 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.201901068$$gVol. 6, no. 17, p. 4576 - 4585$$n17$$p4576 - 4585$$tChemElectroChem$$v6$$x2196-0216$$y2019
000887829 8564_ $$uhttps://juser.fz-juelich.de/record/887829/files/Xu19.pdf$$yRestricted
000887829 8564_ $$uhttps://juser.fz-juelich.de/record/887829/files/Pengyu_draftapril29_WR.pdf$$yPublished on 2019-08-20. Available in OpenAccess from 2020-08-20.
000887829 909CO $$ooai:juser.fz-juelich.de:887829$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887829 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b1$$kFZJ
000887829 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887829 9141_ $$y2020
000887829 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887829 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2018$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-06$$wger
000887829 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000887829 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000887829 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887829 9801_ $$aFullTexts
000887829 980__ $$ajournal
000887829 980__ $$aVDB
000887829 980__ $$aUNRESTRICTED
000887829 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887829 981__ $$aI:(DE-Juel1)IMD-2-20101013