000887831 001__ 887831
000887831 005__ 20240711085659.0
000887831 0247_ $$2doi$$a10.1016/j.actamat.2018.02.030
000887831 0247_ $$2ISSN$$a1359-6454
000887831 0247_ $$2ISSN$$a1873-2453
000887831 0247_ $$2Handle$$a2128/26493
000887831 0247_ $$2altmetric$$aaltmetric:33835903
000887831 0247_ $$2WOS$$aWOS:000430895000002
000887831 037__ $$aFZJ-2020-04457
000887831 082__ $$a670
000887831 1001_ $$0P:(DE-HGF)0$$aKelly, Madeleine N.$$b0
000887831 245__ $$aAnti-thermal grain growth in SrTiO3: Coupled reduction of the grain boundary energy and grain growth rate constant
000887831 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000887831 3367_ $$2DRIVER$$aarticle
000887831 3367_ $$2DataCite$$aOutput Types/Journal article
000887831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607693561_8414
000887831 3367_ $$2BibTeX$$aARTICLE
000887831 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887831 3367_ $$00$$2EndNote$$aJournal Article
000887831 520__ $$aThe dihedral angles at grain boundary thermal grooves in SrTiO3 were measured and used to determine the relative grain boundary energy at several temperatures where the grain growth rate constant displays anti-thermal properties (it decreases with increasing temperature). The measurements indicate that at temperatures in the anti-thermal region (1390 °C–1400 °C), the average grain boundary energy is less than at a lower temperature (1350 °C) where grain boundaries move more rapidly. Three-dimensional electron backscatter diffraction was used to measure the geometries of internal triple junctions in a sample where the slow and fast grain boundaries co-exist. Based on the dihedral angles at triple junctions, the ratio of the energies of slow boundaries to fast boundaries is 0.86. The results indicate that at temperatures between 1350 °C and 1425 °C, the higher and lower energy boundaries coexist. The coexistence of the two boundary types in this temperature range is likely because there is a range of grain boundary energies and the temperature at which a boundary transforms from the slow type to the fast type depends on its grain boundary energy.
000887831 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887831 588__ $$aDataset connected to CrossRef
000887831 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b1$$ufzj
000887831 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b2
000887831 7001_ $$00000-0002-9671-3034$$aRohrer, Gregory S.$$b3$$eCorresponding author
000887831 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2018.02.030$$gVol. 149, p. 11 - 18$$p11 - 18$$tActa materialia$$v149$$x1359-6454$$y2018
000887831 8564_ $$uhttps://juser.fz-juelich.de/record/887831/files/Kel18.pdf$$yRestricted
000887831 8564_ $$uhttps://juser.fz-juelich.de/record/887831/files/170903_SrTiO3_GB_energy.pdf$$yPublished on 2018-02-16. Available in OpenAccess from 2019-02-16.
000887831 909CO $$ooai:juser.fz-juelich.de:887831$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b1$$kFZJ
000887831 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887831 9141_ $$y2020
000887831 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000887831 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887831 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887831 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000887831 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000887831 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887831 9801_ $$aFullTexts
000887831 980__ $$ajournal
000887831 980__ $$aVDB
000887831 980__ $$aUNRESTRICTED
000887831 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887831 981__ $$aI:(DE-Juel1)IMD-2-20101013