001     887835
005     20240711085633.0
024 7 _ |a 10.1016/j.scriptamat.2016.09.017
|2 doi
024 7 _ |a 1359-6462
|2 ISSN
024 7 _ |a 1872-8456
|2 ISSN
024 7 _ |a 2128/26497
|2 Handle
024 7 _ |a altmetric:12113897
|2 altmetric
024 7 _ |a WOS:000386407100027
|2 WOS
037 _ _ |a FZJ-2020-04461
082 _ _ |a 670
100 1 _ |a Rheinheimer, Wolfgang
|0 P:(DE-Juel1)185039
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The equilibrium crystal shape of strontium titanate: Impact of donor doping
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607694310_537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The present study investigates the impact of point defect concentrations on the equilibrium crystal shape of strontium titanate. Therefore the shape of intergranular pores in coarse microstructures was observed. The point defect concentration was changed by donor-doping with Niobium (0.2 at.%–2.4 at.%). A decreasing surface energy anisotropy was found with increasing donor dopant concentration and with increasing temperature. These findings are correlated to the defect chemistry and grain growth behavior of strontium titanate.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Altermann, Fabian J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffmann, Michael J.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.scriptamat.2016.09.017
|g Vol. 127, p. 118 - 121
|0 PERI:(DE-600)2015843-9
|p 118 - 121
|t Scripta materialia
|v 127
|y 2017
|x 1359-6462
856 4 _ |u https://juser.fz-juelich.de/record/887835/files/Rhe17.pdf
|y Restricted
856 4 _ |y Published on 2016-09-18. Available in OpenAccess from 2018-09-18.
|u https://juser.fz-juelich.de/record/887835/files/Rhe16b_pore%20shape%20Nb_final_Source_alt.pdf
909 C O |o oai:juser.fz-juelich.de:887835
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185039
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCRIPTA MATER : 2018
|d 2020-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21