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Abstract

During final stage sintering, a complex interplay of densification and
grain growth dominates microstructural evolution. Grain growth starts,
when pore drag effects become less important due to pore shrinkage. This
grain growth then decreases the driving force available for sintering. Ac-
cordingly, the interplay of pores and grain boundaries needs to be consid-
ered in detail.

A phase-field model was extended to treat pore dynamics under consid-
eration of pressure stability. To study pore attachment and detachment at
moving interfaces, an idealized hexagonal microstructure with a constant
driving force relationship for pore migration is constructed. Additionally,
realistic polycrystalline microstructures were used.

The model is in good agreement with experiments and analytic equa-
tions. Three different cases were observed in the realistic microstructure:
pore attachment at the moving interface, partial and total pore detach-
ment. However, in the partial case, the initial location of pores was found
to be important: pores tend to migrate from quadruple junctions over
triple junctions to grain boundary planes, where they eventually detach.
This results in a variation of pore detachment, which is not captured
in analytic equations. Therefore large simulation setups are required to
reflect the impact of initial pore location on pore drag effects.

Keywords: final stage sintering, pore drag, pore attachment, pore detachment,
phase-field simulations
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1 Introduction

The understanding of solid-state sintering of ceramic materials is crucial for
their technical application, since for each case a tailored microstructure is re-
quired, i.e. size and shape of grains and pores. While in some cases a defined
porous structure is needed, most applications require dense polycrystalline ma-
terials. Additionally to the density, the grain size needs to be considered: most
applications require a fine-grained microstructure.

Sintering and grain growth are two different processes and base on different
driving forces. Sintering is driven by surface energy and particle size. An
increasing particle size reduces the driving force for sintering. Thus sintering and
grain growth are conflictive processes: typically, a high density in sintering can
be obtained for materials with little grain growth (Fig. 1a), while pronounced
grain growth during sintering results in remaining porosity in the microstructure
(Fig. 1b).

(a) (b)

Figure 1: SrT iO3 sintered at 1425○C for 4h (a) and KNN (Potassium-Sodium-
Niobate) sintered at 1105○C for 2h (b)1). In the former, almost full density is
reached with very little grain growth. In the latter case, strong grain growth
prevented sintering in the final stage and a porosity remains in the microstruc-
ture.

In general, solid-state sintering can be divided into three stages, namely
initial, intermediate and final stage. During the initial stage, necks are formed
between powder particles without significant densification. In the intermediate
stage the microstructure evolves into a three-dimensional network of particles
with pore channels in between. Most of the densification occurs in this stage.
As sintering continues, in the final stage the pore channels break up into isolated
pores at junctions.

While grain growth can occur by surface diffusion or vapor transport in the
first and intermediate stage of sintering, coarsening becomes more important
in final stage sintering. This is caused by a change in the interaction of pores
and grain boundaries: in the intermediate stage, large pores can exert strong
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dragging forces to the boundary motion (pore drag). In final stage, pores become
smaller during densification. At a given pore size the driving force on grain
boundaries may exceed the decreasing drag effects of the pores and grain growth
occurs. This decreases the available driving force for sintering. Accordingly, two
phenomena can be observed: (i) detachment of pores from the grain boundary
and (ii) attachment of pores to the moving grain boundary. The details of
these phenomena are very important in sintering, since pore attachment retards
or even inhibits grain growth and preserves a high driving force for complete
densification.

Different theoretical considerations on concurrent densification and grain
growth based on a mean field approach can be found in the literature2–4).
E.g. Brook assumed an idealized microstructure and determined the transi-
tion from pore-controlled to boundary-controlled grain growth as a function of
grain growth and pore size2). Bennison and Harmer5) took conditions for pore
separation into account. Gottstein and Shvindlerman6) presented a theoretical
model of grain boundary migration in the presence of mobile particles. How-
ever, the impact of attached pores on grain growth is difficult to investigate
during sintering and specific setups are needed. Therefore, Rödel and Glaeser7)

developed an experimental setup to study pore-boundary interactions and pore
drag, free from the influence of densification.

So far, analytic models based on mean field approaches are not capable of
reflecting sintering and grain growth under consideration of pore drag in a suf-
ficient way. Through technological progress in computer engineering8), numer-
ical simulations of complex sintering processes became possible. Thus, several
studies focused on modelling the sintering process with computer simulations.
Tikare et al.9) presented a three-dimensional Monte-Carlo Potts model to sim-
ulate grain growth in the presence of mobile pores in an idealized hexagonal
microstructure. They captured effects such as reduced grain boundary velocity
through attached pores as predicted by the analytics of Gottstein and Shvindler-
man6). Another approach to study the sintering processes under consideration
of local microstructure evolution is given by the phase-field method. Grain
growth was studied by Selzer10), Kumar et al.11–13) and Vondrous14) for dif-
ferent anisotropic models using phase-field simulations. Jing et al.15) simulated
the interplay of pores and grain boundaries under hydrostatic pressure. Wang
et al.16) developed a phase-field model, that considers various physical processes
such as grain growth and diffusion mechanisms to study the sintering process
of spherical particles. Kumar et al.17) used a slightly modified version to in-
vestigate the impact of unequal sized particles. Asp and Ågren18) developed a
vacancy driven phase-field approach to simulate the sintering process.

However, so far very little information is available on the impact of pores on
grain boundary migration, although this is of high importance in microstruc-
tural evolution during final stage sintering. Therefore, we present a phase field
approach to study pore drag effects (i.e. pore attachment and detachment) in
well-controllable idealized and realistic microstructures.
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2 Model

To study pore attachment and pore detachment at grain boundaries during fi-
nal sintering stage, we use a general phase-field model based on the work of
Nestler19) under consideration of the thermodynamics of interfaces. The model
is implemented in the highly parallel multi-physics framework Pace3D20–22;10;23).

2.1 Order parameter

We consider the d-dimensional domain Ω ⊂ Rd with d ∈ {1,2,3}. For N ∈ N, we
define the index sets α,β ∈ I ∶= [1, . . . ,N] to distinguish the different phase-fields.
The phase-field φα ∶ Ω × R → [0,1] describes a continuous function φα(x, t) of
the local phase fraction at the spacial position x ∈ Ω and the time t ∈ R. The
set of phase-field variables are defined as a vector on a simplex, φ ∈ ∆N∀x, t.
The simplex is defined as

∆N = {v ∈ [0,1]N ∣
N

∑
α=1

vα = 1} . (1)

The phase-fields represent the physical properties like thermodynamic phases
and orientations, respectively.
The region in which φα = 1 is called bulk Bα ∶= {x ∈ Ω ∣φα(x, t) = 1}. The diffuse
regions between the disjoint bulks are called interface. The total interface region
is defined as IΩ ∶= Ω∖⊍α∈N Bα. The interface between two phases φα and φβ is
Iαβ ∶= {x ∈ IΩ ∣ φα(x, t) + φβ(x, t) = 1}. The region, in which one phase-field is
present, is defined as Ωα = Iαβ ⊍Bα,∀β ∈ N . Accordingly the complementary
region, in which the phase-field is not present is defined as Ω∁α = Ω ∖Ωα.

2.2 Phase-field model

The free energy functional depending on the phase-fields φ is formulated as

F(φ) = ∫
Ω
(εa(φ,∇φ) + 1

ε
ω(φ)) +

N

∑
α=0

sα(φ)hα(φ)dΩ (2)

The first part of the functional (2) consists of the gradient energy density
a(φ,∇φ) and the interfacial energy density ω(φ). The second part represents
the bulk energies sα(φ, T ) with the interpolation function hα(φ). The pa-
rameter ε is related to the interface thickness and is used to scale the diffuse
interface thickness. In this work ε is four, corresponding to the interface thick-
ness of about ten cells.
In order to model a defined diffuse transition between two or more phases, a
gradient energy density of the form

a(φ,∇φ) =
N,N

∑
α,β=1
(α<β)

γαβ ∣q⃗αβ ∣2 (3)
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is used, with the interface energy γαβ and the general gradient vector q⃗αβ =
φα∇φβ − φβ∇φα orthogonal to the interface. The interfacial energy density is
defined by a multi-obstacle potential of the form

ω(φ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16

π2

N,N

∑
α,β=1
(α<β)

γαβφαφβ +
N,N,N

∑
α,β,δ=1
(α<β<δ)

γαβδφαφβφδ, φ ∈ ∆N ,

∞, else.

. (4)

The higher order term γαβδ in (4) is used to reduce the occurrence of third or
higher order phases in the two phase interfaces19;24). To model the pressure ptα
in a pore of the phase-field α with the volume V tα = ∫Ω φα(x, t)dΩ ∣x ∈ Ωα at time
t, we assume an ideal gas. With the ideal gas law ptαV

t
α = nαRT = const ∣ ∀t ∈ R

and the assumption of a constant temperature over the domain Ω, the driving
force can be derived as

sα(φ) =
p0
αV

0
α

V tα
. (5)

As interpolation function for the pressure driving force, we employ

hα(φ) =
φ2
α

N

∑
β=1

φ2
β

(6)

proposed by N. Moelans in25). The expression fulfills the constraints of (1) for
more than two phases.
To minimize the functional (2), we calculate the variational derivative and ob-
tain the evolution equation of Allen-Cahn type

τε
∂φα
∂t

= − δF(φ)
δφα

= −

⎛
⎜⎜⎜⎜⎜
⎝

ε(∂a(φ,∇φ)
∂φα

−∇ ⋅ ∂a(φ,∇φ)
∂∇φα

) + 1

ε

∂ω(φ)
∂φα

+ ∂sα(φ)hα(φ)
∂φα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=rhsα

−λ

⎞
⎟⎟⎟⎟⎟
⎠

,

(7)

with τ as a kinetic coefficient and the Lagrange multiplier

λ = 1

N

N

∑
α=1

rhsα (8)

to ensure the constraint ∑Nα φα = 1 from (1). The kinetic coefficient of the
interfaces is calculated as

τ =
N,N

∑
α,β=1
(α<β)

ταβφαφβ (9)
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with ταβ as the reciprocal mobility.
For simulations with many phase-fields, the vector φ can be locally reduced

without loss of generality. Kim et al.26) showed for a phase-field model of ideal
grain growth, that in one point a maximum of six grains in 3D (five in 2D) can
be in contact with each other. This allows to reduce the number of equations
to solve, and hence, the computational time and the required memory. For
arbitrary constant x, t, the index set of active phases is defined as A ∶= {α ∈
I∣∇φα > 0}. With this, the reduced phase-field vector with the size L = ∣A∣ ≤ N
of the active phases is defined as Φ ∶= (φα)α∈A. It exists a map

M ∶ ∆N →∆L (10)

φ↦Φ (11)

and its inverse

M−1 ∶ ∆L →∆N (12)

Φ↦ φ (13)

in which all not contained indizes are zero φ ∶= (φα)α∈I, φα = 0∀α ∈ I ∖A.
With this reduction of the phase-field vector length and the assumption of

not more than six phase-fields being active in one cell, we can reduce the number
of equations in (8) to a maximum of six. Therefore, the required calculation
time and memory depends no longer on the number of phase-fields in the system.
This method enables the calculation of large grain systems as required for this
work.

3 Results and Discussion

In final stage sintering, isolated pores form at the grain boundaries. Thereby,
the gas inside the pore becomes pressurized and acts against the densification.
This effect is studied in the first part of this section. During further grain
growth, pores start to interact with grain boundaries. Subsequently we compare
the velocity of pore-laden and pore-free boundaries for idealized settings. For a
realistic setting, the pore detachment in dependence of the pore size and spacing
as well as the grain size in polycrystals is studied.

All parts are structured as follows: first we depict the simulation geometry
and introduce the analytic equations. Afterwards the simulation results are
presented and discussed.

3.1 Stability of Pores in Grains

During detachment of pores from grain boundaries, pores become distorted and
are finally trapped inside a grain. In this section, we study the stability of pores
and validate the model by Comparison with physical properties, as e.g. the
ideal gas law. We place a pore with a non-equilibrium pressure, diameter and
interface energy inside a grain and simulate until the equilibrium state between
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Figure 2: Comparison of the simulated pressure difference with the Young-
Laplace equation for different interface energies and pore diameter rinit

p for 2D
in a) and 3D geometries in b).

the forces of curvature minimization and gas pressure is reached. This study
serves as validation case for the pressure model and as basis for the more complex
pore grain boundary interactions. The pressure difference ∆p of a spherical pore
inside a grain with the interface energy γαβ can be calculated analytically by
the Young-Laplace equation

∆p =
γαβ

requ.
p

(d − 1) (14)

with d as the dimension of the considered domain and requ.
p the equilibrium

radius of the pore.
To validate the model extension, the results of two and three dimensional

simulations are evaluated, if the pressure reaches equilibrium according to the
Young-Laplace equation. For the two dimensional case, two simulation studies
are discussed. In the first study, three interface energies γαβ = {0.1,1,2} are
chosen and the initial radii rinit

p are varied. In the second study, for three

initial radii rinit
p = {50,100,500} the interface energies are changed in a more

detailed range. The two studies are recorded in Fig. 2a. The diagram shows the
pressure difference over the inverse equilibrium radius. The analytic solutions
are plotted as black lines and the simulation results are indicated by symbols.
The first study corresponds to the three diagonal lines and the second study
to three vertical lines. For three dimensional simulations, we analyzed three
different initial radii as well as three different interface energies as depicted in
Fig. 2b. The simulation results in Fig. 2 match the analytic solutions of (14)
in both cases, 2D as well as 3D. Therefore, the introduced extension to the
phase-field model is capable to capture the physical pressure behavior of the
pores. Following, we study the pore-grain boundary interaction for different
microstructural setups.
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G

dp

periodicperiodic

Figure 3: Simulation setup and the varied parameters to study pore attachment
and detachment.

3.2 Pores at Grain Boundaries of Idealized Geometries

To study the behavior of pores on a moving grain boundary, we generate the
grain geometry introduced by Miodownik et al.27) and modified by Tikare et
al.9). The geometry consists of hexagonal prisms with equal interface energies,
resulting in a stable arrangement without grain growth among the hexagons.
On top of this structure a single crystal is placed as depicted in Fig. 3. This
geometry has the advantage of a constant driving force Fb and hence a constant
growth velocity for the single crystal into the hexagonal prisms. The velocity
vb of the boundary without pores can be written as

vb =MbFb =
2γαβMb

G
(15)

where Mb is the mobility of the boundary between the hexagonal structure and
the single crystal. G denotes the diameter of the hexagon.

In the case of a pore-laden interface between the hexagonal prisms and the
single crystal, the velocity can be written as

v∗b =Mb (Fb −NdFp) (16)

with Nd as the pore density and Fp the pore drag force2;28). Tikare et al.9)

derived a more suitable description for the velocity of a pore-laden interface
vTb based on the models in6;29;30) where the pores are placed at the quadruple
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junctions. The velocity is written as

vTb = Fb
MpMb

NAMb +Mp
(17)

with Mp the mobility of the pore-grain interface and NA as the unit area of
pores at the boundary9). The unit area of pores is defined as

NA =
πNp (dp2 )

2

A
(18)

with unit area A and Np the number of pores therein.
The mobility of the pores can be derived by the flux of atoms31). For surface

diffusion, the mobility Mp can be written as

Mp =
DsδsΩ

π (dp
2
)

4
kBT

∝ 1

d4
p

(19)

with the diffusion coefficient Ds, the thickness of the diffusion layer δs, the
atomic volume Ω, the pore diameter dp, the Boltzmann constant kB and the
temperature T . As indicated, for a constant temperature, (19) depends on the
size of the pore to the power four.

The grain structure consists of four hexagonal prisms, which are periodically
continued according to symmetry. At the top and bottom of the domain, Neu-
mann boundary conditions with a gradient of zero are imprinted. To study the
interaction of pores and grain boundaries, the pore diameter dp as well as the
hexagon diameter G are varied. For the mobilities of the grain boundaries of the
hexagonal prisms Mpc and the single crystal Msc the same values are used, noted
as Mb. Depending on the mobility ratio M = Mp/Mb of the pore-grain boundary
mobility and the grain-grain boundary mobility, pore attachment is predicted
for ratios larger than one and detachment for ratios smaller than one28). The
simulations are carried out with a constant mobility ratio M and a varying pore
diameter. Note that the grain boundary mobility Mb is not constant, since M
is kept constant and the mobility of the pore depends on their size according to
(19). All interface energies γαβ are chosen equal and are non-dimensionalized
to the value one. The parameters are summarized in Table 1.

The domain sizes for simulations with G = 100 are 175 × 250 × 200 voxel
cells, for G = 150 and 200 are 350 × 250 × 400 voxel cells and for G = 250 are
440×250×500 voxel cells. The simulations are conducted on the SuperMUC at
the Leibniz-Rechenzentrum (LRZ) running about 8h using 150, 576 and 1100
cores, respectively.

First we study the attachment and detachment behavior of the pores by using
two different mobility ratios given in Table 1 a). Equal pores are placed at the
quadruple junctions of the hexagonal prisms and the single crystal. Figure 5
displays the temporal evolution for the two mobility ratios of M = 0.04 and
M = 0.05. For M = 0.05, pore attachment at the grain boundary can be observed
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Table 1: Simulation parameters for the hexagonal setup. The parameters in
a) are used to study pore detachment and in b) to study pore-laden boundary
migration.

parameter simulation value

a) b)
dp [cells] 20 15,20,25,30
G [cells] 150 100,200,250
Mp [a.u.] 1 0.198,0.41,1,3.16
M [-] 0.04,0.05 5,10,15,20

(a) pore at quadruple junc-
tion

(b) pore at junction before
detachment

(c) pore at grain boundary
plane

Figure 4: Locations and shapes of pores at grain boundaries.

in Figs. 5a to 5c. The pores remain at quadruple junctions over the time. For
the lower ratio of M = 0.04, depicted in Figs. 5d to 5f, pore detachment can be
observed. In both cases, the pores change their shape from a sphere to an ice
cream cone shape as long as they are attached to the grain boundary, depicted
in Fig. 4a.

This shape was also observed by Tikare et al.9). Before detachment, due to
the higher velocity of the grain boundary plane, the pores are further deformed
as shown in Fig. 4b. Thereby the pores lose their stable position at the quadruple
junctions as indicated by the arrow in Fig. 5e. During the detachment, the pores
shift from the quadruple point to a triple line and from there to a grain boundary
depicted in Fig. 4c, where they finally detach. For lower mobility ratios, the
pores directly detach from quadruple points without changing their shape or
position. To study the effect of the pore position, the pores are placed in the
center of the hexagonal grains using the same parameters as before. In contrast
to the results in Fig. 5, both mobility ratios lead to detachment. In addition,
the shape of the pores differs from those at quadruple junctions. They attain a
shape similar to a droplet. For the lower mobility ratio, pores detach earlier.

To quantify the simulation results, we determine the velocity of pore drag
effects (pore-laden and pore-free grain boundaries) and compare the results
with analytic equations. We consider four mobility ratios, four pore sizes and
three hexagon diameters as given in Table 1 b). To prevent detachment of the
pores, we choose higher mobility ratios. In Figs. 7a to 7c the velocity over the
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(a) t=13.36 (b) t=300.6 (c) t=484.3

(d) t=13.36 (e) t=300.6 (f) t=484.3

Figure 5: Evolution of grain boundaries and pores in the case of pore attachment
(Figs. 5a to 5c) with M = 0.05 and of pore detachment (Figs. 5d to 5f) with
M = 0.04 for G = 150 and for different time steps. The arrow indicates the
moving pore position during detachment.
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(a) t=13.36 (b) t=167 (c) t=217.1

(d) t=13.36 (e) t=116.9 (f) t=183.7

Figure 6: Evolution of grain boundaries and pores in the center of the hexagonal
grains with M = 0.05 (Figs. 6a to 6c) and with M = 0.04 (Figs. 6d to 6f) for
G = 150 and for different time steps.
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Figure 7: Comparison of computationally measured and analytically calculated
velocities measured and calculated for the pore-laden grain boundary for three
grain sizes G of the hexagonal grains and for varying mobilities M and pore
diameters dp.

mobility ratio is depicted. The dashed line corresponds to the analytic solutions
as given in (17). For all simulations, the measured velocity matches the analytic
expression. The slightly higher velocities of grain boundaries in the simulations
result from the shape change of moving pores, which is not accounted for in the
analytic equation (17). Similar findings are discussed by Tikare et al.9) using
a Monte-Carlo Potts model. For all hexagon diameters, the velocity decreases
with an increasing pore diameter. As expected, larger mobility ratios as well as
larger hexagons lead to a decrease of the velocity.

To validate general grain boundary motion, we additionally measure the ve-
locities for a pore-free boundary and compare the values to the analytic equation
(15). Four mobility ratios and a hexagon diameter of 200 cells are investigated.
In Fig. 7d the velocities are plotted. Again, the measured values follow the
analytic equation.
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3.3 Pores at Grain Boundaries of Realistic Geometries

To study the pore-grain boundary interaction in more realistic geometries, the
idealized hexagonal structure is replaced by a more realistic microstructure of
multiple grains. This microstructure is generated by a Voronoi tessellation with
a homogenous grain size distribution and a mean grain diameter G14). At the
interface between the single crystal and the polycrystal, pore arrays with a
defined spacing f are placed. This is a common experimental setup to observe
mobility induced effects such as pore drag7;32–37). In this setup, similar to
the hexagonal structure, the polycrystal provides a driving force for the single
crystal to grow into the polycrystal.

f

dp

G(0)

Figure 8: Simulation setup and parameters related to the experiments of38).
The pore spacing f , the pore diameter dp and the initial average grain diameter
G(0) are illustrated.

For realistic microstructures as in Fig. 8, pores can be located at quadruple
junctions, triple junctions or grain boundaries. Additionally, the grains of the
polycrystal coarsen and change the driving force with respect to the single crys-
tal. Therefore the grain boundary velocity of the interface between the single
crystal and the polycrystal is not constant.
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To study the attachment and detachment of pores, we first derive an ana-
lytic expression for comparison with the simulation results. The driving force
resulting from curvature of a large single grain growing into a polycrystal with
the mean grain diameter G is estimated by a mean field approach as described
by Hillert39). Based on this model, Rödel and Glaeser7) assume the maximum
driving Force Fb,max to be

Fb,max =
3γαβ

G(t)
(20)

with the interface energy γαβ of the grain boundaries in the polycrystal. The
maximum velocity of the grain boundary can then be calculated as

vb =MbFb,max . (21)

As the driving force depends on the grain size in the polycrystal and, thus, on
the time t, a general grain growth law is used to determine G(t). The grain
growth law of the polycrystal is formulated as

G(t)n −G(0)n = knt (22)

with the time dependent grain size G(t), the initial grain size G(0), an empirical
grain growth constant kn and the growth exponent n. In literature, different
growth exponents are reported. Burke and Turnbull40) describe the evolution
of the mean grain size by a parabolic grain growth law with n = 2.

To describe the growth of the single crystal into the polycrystal, Rödel and
Glaeser7) proposed a parabolic grain-growth law of the form

∆L2 = kLt (23)

with the growth constant kL.
Using the root of (23) and the relation

Mbγαβ =
kLG(t)

6∆L
(24)

derived by Rödel and Glaeser38) we can calculate the velocity of (21). The drag
force of a pore can be written according to7;28) as

Fp = π
dp

2
γαβ . (25)

Inserting (21) and (25) in (16), the critical grain size of the polycrystal for pore
detachment is

G(t) < 6f2

πdp
(1 −

vp

vb
) . (26)

With the relation (26) we can compare the pore detachment in realistic geome-
tries.
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For the simulations, we systematically vary the pore diameter dp. The mo-
bility of the grain boundaries Mb is kept constant for all simulations. This
results in a varying mobility ratio depending on the pore diameter in contrast
to the previous studies where a constant ratio is established. The interface en-
ergy γαβ of the grain-grain boundary is chosen as 0.5 and the interface energy
of the pore-grain boundary as 1. To study the effect of pore spacing f , we
consider three pore diameters. Additionally, we systematically vary the initial
mean grain size of the polycrystal for one selected and fixed pore diameter of
dp = 14. The used parameters are given in Table 2.

Table 2: Simulation parameter for realistic polycrystalline structures.

parameter simulation value

f [cells] 60, 120, 240

G(0) [cells] 15, 20, 30, 35, 40, 45, 50, 55, 60
dp [cells] 10, 14, 20
Mp [a.u.] 0.12, 0.49, 1.87
M [-] 1.6, 0.42, 0.1

The domain size for a pore spacing of f = 240 cells is 480 × 480 × 300 voxel
cells and 240 × 240 × 300 voxel cells for pore spacings of f = 60 and 120 cells.
All simulations are conducted on the SuperMUC at the Leibniz-Rechenzentrum
(LRZ) in Munich using 2449 cores for 16h for the large domain and 289 cores
for 10h for the smaller ones.

First, the effect of the pore size dp on pore attachment and detachment is
investigated. In Fig. 9, the evolution of the microstructure is given for different
time steps and for three pore diameter of 10, 14 and 20 cells. Thereby three
cases are observed, namely attachment, complete detachment and a partial de-
tachment. This effects can also be seen in the Videos 1 and 2 youtube.

@Editor: Please link the videos if possible:
https://www.youtube.com/watch?v=YmHfn5Y6T7U https://www.youtube.

com/watch?v=76A_Uwd1YqE

For a diameter of dp = 10 cells (Figs. 9a to 9c), attachment of the pores
occurs. During grain growth, pores migrate not only in growth direction of the
single crystal, but also horizontal by following the triple and quadruple junctions
of the polycrystal, as illustrated in Fig. 11. This effects are also visible in the
videos on youtube.

@Editor: Please link the videos if possible:
https://www.youtube.com/watch?v=YmHfn5Y6T7U https://www.youtube.

com/watch?v=76A_Uwd1YqE

In black circles the initial position of the pores, and in yellow the position at
t = 1680 is indicated. At the advanced time step, all pores are located at triple
and quadruple junctions.
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(a) initial filling (b) t = 1680 (c) t = 3780

(d) initial filling (e) t = 1260 (f) t = 3360

(g) initial filling (h) t = 294 (i) t = 840

Figure 9: Evolution of grain boundaries and the pores in the case of pore at-
tachment (Figs. 9a to 9c) with dp = 10, complete pore detachment (Figs. 9g
to 9i) with dp = 20 and a partial state (Figs. 9d to 9f) with dp = 14 for different
time steps. The domain size was 320 × 240 × 240 voxel for all simulations.

17



60 80 100 120 140 160 180 200 220 240

20

30

40

50

60

70

80

90

vp = 0.02

vp = 0.03

44%

36%

31%

19%

50%

31%

25%

75%

25%

25% 25%

50%

25%

25%

50%

50%

partial detachment

detachment

attachment

spacing f [cells]

G
0

[c
el
ls
]

pore separation pore attachment

partial pore separation grain growth law for G(t) with vp = 0.02

grain growth law for G(t) with vp = 0.03

Figure 10: generated separation map for simulation results and comparison with
different grain growth laws

For dp = 14 (Figs. 9d to 9f), a partial state can be detected with both,
attached and detached pores. As found in the previous setting of hexagonal
prisms, pore detachment depends on the location of the pores. For the partial
state, pore detachment is only observed from grain boundary planes and not
from triple or quadruple junctions.

For a pore diameter of dp = 20 (Figs. 9g to 9i), instant pore detachment is
observed. The pores do not change their position but remain at their initial
position, which can be attributed to the low mobility ratio.

To further analyze the effects of partial detachment for a pore diameter of
14 cells, the grain size G(0) in the polycrystal is changed.

Figure 10 shows a map of the pore behavior in the simulations for different
initial grain sizes G and pore spacings f . The red marks indicate simulations
with complete pore detachment. Green marks show pore attachment and in
blue, partial detachment with a particular percentage of detached pores is given.

To obtain the dashed and the solid line from (26), the maximum pore ve-
locity is measured immediately before the detachment in the simulated mi-
crostructures. A lower and an upper pore velocity limit is found by exploiting
the maximum velocity of the first and last event of pore detachment of the same
pore array for each simulation. The averaged limits are found to be v = 0.02
and v = 0.03.

The morphology map in Fig. 10 indicates three regions, which is in good
accordance to experimental work on alumina7). The lower part, corresponds to
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(a) t = 0 (b) t = 1680

Figure 11: Top view to indicate the pore movement for a pore diameter of
dp = 10, f = 60 and G(0) = 20. In green the initial position of the pores are
indicated and in yellow the position at time t = 1680.

conditions for pore detachment given by (26) and grain sizes smaller 30 cells. In
the upper part, for grain sizes larger 70 cells, pores stay attached to the grain
boundary, due to low driving force resulting in a slow migration of the interface.
In between, a diffuse region appears, in which partial detachment is observed.
This region is close to the analytic solution for pore detachment (26).

In Fig. 10, the fraction of detached pores is given. One should expect that the
fraction of detached pores increases with decreasing grain size of the polycrys-
tal, since the driving force for migration and, thus, the migration rate increases.
However, this trend is not clearly confirmed which might be explained by the
limited statistics of the simulations in Fig. 10. Since our simulation setup uses
only a limited number of pores (16 for a pore size of 60 cells and 4 for a pore
size of greater than 120 cells), the initial pore position is statistically not well
represented. For idealized hexagonal geometries, we showed that pore detach-
ment is influenced by the location of the pore in the microstructure: pores at
quadruple points tend to migrate first to triple lines and then to grain boundary
planes, where they finally detach. Hence, we can conclude the initial location
of a pore is important in the non-ideal polycrystalline microstructures: a pore
initially located at a boundary plane will detach much easier than a pore at a
triple line or quadruple line. The pores at the latter two positions first migrate
along the boundary planes towards the center before detachment. This migra-
tion is highlighted in Fig. 11. Figure 11a displays the initial position of pores
before grain growth, whereas Fig. 11b refers to an advanced grain coarsening
state. The initial positions are added as black circles. The still attached pores
in the final stage are colored yellow. Clearly a horizontal migration of pores can
be observed. Simultaneously, grain growth occurs in the polycrystalline matrix
leading to a decreasing driving force and hence a decreasing migration rate of
the single crystal interface. If the horizontal movement is too slow, the migra-
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tion rate of the interface decreases in the mean time and, eventually, becomes
too low for pore detachment. Accordingly, the initial position of a pore has
a strong influence on whether the pore detaches or not. Hence no clear trend
in the fraction of detached pores can be observed in Fig. 10. Therefore, larger
simulations are needed to reveal the statistical trend in pore detachment. How-
ever, the general behavior of pore detachment fits theory according to (26) and
experimental results7) well.

Overall, the results presented above show that simulating pore attachment
and detachment with the introduced phase-field model gives reasonable results.
Accordingly, further studies should focus on the impact of attached pores during
grain growth in final stage sintering. As stated in the introduction, grain growth
occurs in final stage sintering, as soon as pores detach and grain boundary
migration occurs. The present model can be used to reveal the complex behavior
of grain growth and sintering and to complete the knowledge on grain growth
in porous systems.

4 Conclusion and Outlook

In this work we extend a phase-field model to study the pore drag effect. The
pore stability is validated with the Young-Laplace equation. To study the be-
havior of pore attachment and detachment at grain boundaries, we consider
an idealized hexagonal geometry and a realistic microstructure setup. For the
idealized setup the simulation results match the analytic equations for the grain
boundary velocity of pore-laden and pore-free grain boundaries. For the real-
istic setup three cases are observed: Pore attachment, detachment and partial
detachment, as previously found in experiments7). To quantify the mechanisms
and effects, a pore separation map is established in dependence of pore spacing
and grain size reflecting the analytic predictions.

Our main conclusions are: (i) the introduced phase-field model agrees with
the analytic solutions for pressure and grain boundary velocity. (ii) Detachment
of pores depends on the initial location of the pores, e.g. grain boundary, triple
and quadruple junction. (iii) Pores tend to migrate from quadruple junction to
triple junctions to boundary planes, where they finally detach. (iv) The separa-
tion of pores depends on the velocity of grain-boundaries and hence grain size
in the polycrystal. (v) For realistic microstructures, partial pore detachment
can be observed, resulting from variance of the initial pore location. (vi) For
realistic microstructures, the analytic solutions ignore the variance in pore lo-
cation and hence give only a rough estimation for pore detachment. (vii) The
pore spacing has a minor effect on the pore detachment.

To improve the understanding of the pore shape and location on the separa-
tion condition, further studies are necessary. To gain insight into more realistic
setups comparable with experiments, we will study the effects of heterogeneous
grain size distributions, non-uniform mobility distributions and anisotropic grain
boundary properties in larger microstructures elements in forthcoming papers.
Additionally advanced diffusion mechanisms will be considered and compared
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with the pressure model based on the ideal gas approach.
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