001     887840
005     20240711085633.0
024 7 _ |a 10.1007/s10853-015-9535-6
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a 2128/26501
|2 Handle
024 7 _ |a WOS:000367647100009
|2 WOS
037 _ _ |a FZJ-2020-04466
082 _ _ |a 670
100 1 _ |a Rheinheimer, Wolfgang
|0 P:(DE-Juel1)185039
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Grain growth transitions of perovskite ceramics and their relationship to abnormal grain growth and bimodal microstructures
260 _ _ |a Dordrecht [u.a.]
|c 2016
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607696224_537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Barium titanate, strontium titanate, and lithium lanthanum titanate (LLTO) were used to study grain growth in perovskite ceramics. In these materials, a grain growth transition was found. In the case of barium titanate, grain growth shows a gradual transition to faster growth with increasing temperature, whereas strontium titanate indicates exponentially decreasing grain growth with increasing temperature. In reducing atmosphere, strontium titanate shows two transitions; the additional second transition is attributed to a reversible wetting transition. In LLTO, a single grain growth transition was found and seems to be caused by a wetting transition as well. In all cases, the grain growth transitions are strongly correlated to abnormal grain growth. This non-Arrhenius behavior of grain growth in perovskites is discussed in relation to abnormal grain growth and bimodal microstructures: the existence and coexistence of two grain boundary types with different grain boundary mobility is proposed. In this framework, a gradual transition of the boundary population from type 1 to type 2 with temperature seems to cause the growth phenomena in perovskites on a macroscopic scale. Most likely, this gradual transition is driven by the anisotropy of the grain boundary energy. Possible microscopic origins of the grain growth transitions are discussed. The consequences of bimodal growth and boundary anisotropy for classical mean field modeling of grain growth are assessed: the grain growth constant k is not capable to appropriately reflect grain growth in perovskites, and boundary anisotropy cannot be included in standard mean field approaches.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoffmann, Michael J.
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1007/s10853-015-9535-6
|g Vol. 51, no. 4, p. 1756 - 1765
|0 PERI:(DE-600)2015305-3
|n 4
|p 1756 - 1765
|t Journal of materials science
|v 51
|y 2016
|x 1573-4803
856 4 _ |u https://juser.fz-juelich.de/record/887840/files/Rheinheimer-Hoffmann2016_Article_GrainGrowthTransitionsOfPerovs.pdf
|y Restricted
856 4 _ |y Published on 2015-10-29. Available in OpenAccess from 2016-10-29.
|u https://juser.fz-juelich.de/record/887840/files/Rhe15l_HTC_GGAnn.pdf
909 C O |o oai:juser.fz-juelich.de:887840
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185039
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-09-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI : 2018
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21