000887842 001__ 887842
000887842 005__ 20240711085633.0
000887842 0247_ $$2doi$$a10.1016/j.actamat.2014.08.065
000887842 0247_ $$2ISSN$$a1359-6454
000887842 0247_ $$2ISSN$$a1873-2453
000887842 0247_ $$2Handle$$a2128/28049
000887842 0247_ $$2WOS$$aWOS:000347017800004
000887842 037__ $$aFZJ-2020-04468
000887842 082__ $$a670
000887842 1001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b0$$eCorresponding author$$ufzj
000887842 245__ $$aThe equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution
000887842 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000887842 3367_ $$2DRIVER$$aarticle
000887842 3367_ $$2DataCite$$aOutput Types/Journal article
000887842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625841968_7162
000887842 3367_ $$2BibTeX$$aARTICLE
000887842 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887842 3367_ $$00$$2EndNote$$aJournal Article
000887842 520__ $$aIn this study, the equilibrium crystal shape (ECS) of a model system, strontium titanate, is compared with the grain boundary plane distribution (GBPD) as a function of temperature. Strontium titanate has a pronounced surface energy anisotropy and a grain growth anomaly, with the grain growth rate decreasing by orders of magnitude with increasing temperature. The ECS was determined from the shape of small intragranular pores and the GBPD was determined from orientation measurements on surfaces, with the relative areas of grain boundary planes in a polycrystal correlated to the surface energy of both adjacent crystal planes. The grain boundary energy has been previously proposed to be the sum of the surface energy of the adjacent grains less a binding energy that is assumed to be constant. While much experimental evidence exists for this assumption at a fixed temperature, the influence of temperature is not known. While the anisotropy of the ECS was found to decrease with temperature, the anisotropy of the GBPD increased with temperature. These findings indicate that changes in the binding energy with temperature must be considered, as the binding energy links the surface energy to the grain boundary energy. The results are discussed with respect to the grain growth anomaly of strontium titanate, in which the grain growth decreases with increasing temperature.
000887842 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000887842 588__ $$aDataset connected to CrossRef
000887842 7001_ $$0P:(DE-HGF)0$$aBäurer, Michael$$b1
000887842 7001_ $$0P:(DE-HGF)0$$aChien, Harry$$b2
000887842 7001_ $$0P:(DE-HGF)0$$aRohrer, Gregory S.$$b3
000887842 7001_ $$0P:(DE-HGF)0$$aHandwerker, Carol A.$$b4
000887842 7001_ $$0P:(DE-HGF)0$$aBlendell, John E.$$b5
000887842 7001_ $$0P:(DE-HGF)0$$aHoffmann, Michael J.$$b6
000887842 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2014.08.065$$gVol. 82, p. 32 - 40$$p32 - 40$$tActa materialia$$v82$$x1359-6454$$y2015
000887842 8564_ $$uhttps://juser.fz-juelich.de/record/887842/files/1-s2.0-S135964541400696X-main.pdf$$yRestricted
000887842 8564_ $$uhttps://juser.fz-juelich.de/record/887842/files/SrTiO3_ECS_GBPD_final.pdf$$yPublished on 2014-10-03. Available in OpenAccess from 2015-10-03.
000887842 909CO $$ooai:juser.fz-juelich.de:887842$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b0$$kFZJ
000887842 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000887842 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000887842 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887842 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887842 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000887842 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000887842 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887842 9801_ $$aFullTexts
000887842 980__ $$ajournal
000887842 980__ $$aVDB
000887842 980__ $$aUNRESTRICTED
000887842 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887842 981__ $$aI:(DE-Juel1)IMD-2-20101013