Home > Publications database > The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution > print |
001 | 887842 | ||
005 | 20240711085633.0 | ||
024 | 7 | _ | |a 10.1016/j.actamat.2014.08.065 |2 doi |
024 | 7 | _ | |a 1359-6454 |2 ISSN |
024 | 7 | _ | |a 1873-2453 |2 ISSN |
024 | 7 | _ | |a 2128/28049 |2 Handle |
024 | 7 | _ | |a WOS:000347017800004 |2 WOS |
037 | _ | _ | |a FZJ-2020-04468 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Rheinheimer, Wolfgang |0 P:(DE-Juel1)185039 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution |
260 | _ | _ | |a Amsterdam [u.a.] |c 2015 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1625841968_7162 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this study, the equilibrium crystal shape (ECS) of a model system, strontium titanate, is compared with the grain boundary plane distribution (GBPD) as a function of temperature. Strontium titanate has a pronounced surface energy anisotropy and a grain growth anomaly, with the grain growth rate decreasing by orders of magnitude with increasing temperature. The ECS was determined from the shape of small intragranular pores and the GBPD was determined from orientation measurements on surfaces, with the relative areas of grain boundary planes in a polycrystal correlated to the surface energy of both adjacent crystal planes. The grain boundary energy has been previously proposed to be the sum of the surface energy of the adjacent grains less a binding energy that is assumed to be constant. While much experimental evidence exists for this assumption at a fixed temperature, the influence of temperature is not known. While the anisotropy of the ECS was found to decrease with temperature, the anisotropy of the GBPD increased with temperature. These findings indicate that changes in the binding energy with temperature must be considered, as the binding energy links the surface energy to the grain boundary energy. The results are discussed with respect to the grain growth anomaly of strontium titanate, in which the grain growth decreases with increasing temperature. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Bäurer, Michael |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Chien, Harry |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rohrer, Gregory S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Handwerker, Carol A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Blendell, John E. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Hoffmann, Michael J. |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1016/j.actamat.2014.08.065 |g Vol. 82, p. 32 - 40 |0 PERI:(DE-600)2014621-8 |p 32 - 40 |t Acta materialia |v 82 |y 2015 |x 1359-6454 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/887842/files/1-s2.0-S135964541400696X-main.pdf |y Restricted |
856 | 4 | _ | |y Published on 2014-10-03. Available in OpenAccess from 2015-10-03. |u https://juser.fz-juelich.de/record/887842/files/SrTiO3_ECS_GBPD_final.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:887842 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185039 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-23 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-23 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACTA MATER : 2018 |d 2020-08-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACTA MATER : 2018 |d 2020-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-23 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|