000887857 001__ 887857
000887857 005__ 20240711085634.0
000887857 0247_ $$2doi$$a10.3390/membranes10110339
000887857 0247_ $$2Handle$$a2128/26142
000887857 0247_ $$2pmid$$a33198304
000887857 0247_ $$2WOS$$aWOS:000593250700001
000887857 037__ $$aFZJ-2020-04483
000887857 082__ $$a570
000887857 1001_ $$0P:(DE-Juel1)180798$$aLeonard, kwati$$b0$$eCorresponding author
000887857 245__ $$aProcessing Ceramic Proton Conductor Membranes for Use in Steam Electrolysis
000887857 260__ $$aBasel$$bMDPI$$c2020
000887857 3367_ $$2DRIVER$$aarticle
000887857 3367_ $$2DataCite$$aOutput Types/Journal article
000887857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605277480_16531
000887857 3367_ $$2BibTeX$$aARTICLE
000887857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887857 3367_ $$00$$2EndNote$$aJournal Article
000887857 520__ $$aSteam electrolysis constitutes a prospective technology for industrial-scale hydrogen production. The use of ceramic proton-conducting electrolytes is a beneficial option for lowering the operating temperature. However, a significant challenge with this type of electrolyte has been upscaling robust planar type devices. The fabrication of such multi-layered devices, usually via a tape casting process, requires careful control of individual layers’ shrinkages to prevent warping and cracks during sintering. The present work highlights the successful processing of 50 × 50 mm2 planar electrode-supported barium cerium yttrium zirconate BaZr0.44Ce0.36Y0.2O2.9 (BZCY(54)8/92) half cells via a sequential tape casting approach. The sintering parameters of the half-cells were analyzed and adjusted to obtain defect-free half-cells with diminished warping. Suitably dense and gas-tight electrolyte layers are obtained after co-sintering at 1350 °C for 5 h. We then assembled an electrolysis cell using Ba0.5La0.5CoO3−δ as the steam electrode, screen printed on the electrolyte layer, and fired at 800 °C. A typical Ba0.5La0.5CoO3−δ|BaZr0.44Ce0.36Y0.2O3−δ(15 μm)|NiO-SrZr0.5Ce0.4Y0.1O3−δ cell at 600 °C with 80% steam in the anode compartment reached reproducible terminal voltages of 1.4 V @ 500 mA·cm−2, achieving ~84% Faradaic efficiency. Besides electrochemical characterization, the morphology and microstructure of the layered half-cells were analyzed by a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy. Our results also provide a feasible approach for realizing the low-cost fabrication of large-sized protonic ceramic conducting electrolysis cells (PCECs)
000887857 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000887857 588__ $$aDataset connected to CrossRef
000887857 7001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b1$$ufzj
000887857 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya E.$$b2$$ufzj
000887857 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm A.$$b3$$ufzj
000887857 7001_ $$0P:(DE-HGF)0$$aIshihara, Tatsumi$$b4
000887857 7001_ $$0P:(DE-HGF)0$$aMatsumoto, Hiroshige$$b5
000887857 773__ $$0PERI:(DE-600)2614641-1$$a10.3390/membranes10110339$$n11$$p339$$tMembranes$$v10$$x2077-0375$$y2020
000887857 8564_ $$uhttps://juser.fz-juelich.de/record/887857/files/membranes-10-00339-v2-1.pdf$$yOpenAccess
000887857 909CO $$ooai:juser.fz-juelich.de:887857$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000887857 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887857 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887857 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-02
000887857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000887857 9141_ $$y2020
000887857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
000887857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b2$$kFZJ
000887857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b3$$kFZJ
000887857 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000887857 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887857 9801_ $$aFullTexts
000887857 980__ $$ajournal
000887857 980__ $$aVDB
000887857 980__ $$aUNRESTRICTED
000887857 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887857 981__ $$aI:(DE-Juel1)IMD-2-20101013