001     887857
005     20240711085634.0
024 7 _ |2 doi
|a 10.3390/membranes10110339
024 7 _ |2 Handle
|a 2128/26142
024 7 _ |2 pmid
|a 33198304
024 7 _ |2 WOS
|a WOS:000593250700001
037 _ _ |a FZJ-2020-04483
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)180798
|a Leonard, kwati
|b 0
|e Corresponding author
245 _ _ |a Processing Ceramic Proton Conductor Membranes for Use in Steam Electrolysis
260 _ _ |a Basel
|b MDPI
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1605277480_16531
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Steam electrolysis constitutes a prospective technology for industrial-scale hydrogen production. The use of ceramic proton-conducting electrolytes is a beneficial option for lowering the operating temperature. However, a significant challenge with this type of electrolyte has been upscaling robust planar type devices. The fabrication of such multi-layered devices, usually via a tape casting process, requires careful control of individual layers’ shrinkages to prevent warping and cracks during sintering. The present work highlights the successful processing of 50 × 50 mm2 planar electrode-supported barium cerium yttrium zirconate BaZr0.44Ce0.36Y0.2O2.9 (BZCY(54)8/92) half cells via a sequential tape casting approach. The sintering parameters of the half-cells were analyzed and adjusted to obtain defect-free half-cells with diminished warping. Suitably dense and gas-tight electrolyte layers are obtained after co-sintering at 1350 °C for 5 h. We then assembled an electrolysis cell using Ba0.5La0.5CoO3−δ as the steam electrode, screen printed on the electrolyte layer, and fired at 800 °C. A typical Ba0.5La0.5CoO3−δ|BaZr0.44Ce0.36Y0.2O3−δ(15 μm)|NiO-SrZr0.5Ce0.4Y0.1O3−δ cell at 600 °C with 80% steam in the anode compartment reached reproducible terminal voltages of 1.4 V @ 500 mA·cm−2, achieving ~84% Faradaic efficiency. Besides electrochemical characterization, the morphology and microstructure of the layered half-cells were analyzed by a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy. Our results also provide a feasible approach for realizing the low-cost fabrication of large-sized protonic ceramic conducting electrolysis cells (PCECs)
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)144923
|a Deibert, Wendelin
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129617
|a Ivanova, Mariya E.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129637
|a Meulenberg, Wilhelm A.
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Ishihara, Tatsumi
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Matsumoto, Hiroshige
|b 5
773 _ _ |0 PERI:(DE-600)2614641-1
|a 10.3390/membranes10110339
|n 11
|p 339
|t Membranes
|v 10
|x 2077-0375
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/887857/files/membranes-10-00339-v2-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887857
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144923
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129617
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129637
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2020-09-02
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21