000887871 001__ 887871 000887871 005__ 20210130010703.0 000887871 0247_ $$2doi$$a10.5281/ZENODO.3937849 000887871 037__ $$aFZJ-2020-04493 000887871 041__ $$aen 000887871 1001_ $$0P:(DE-HGF)0$$aChang, Luke$$b0$$eCorresponding author 000887871 1112_ $$aAnnual meeting of the Organization for Human Brain Mapping 2020$$cVirtual$$d2020-06-23 - 2020-07-03$$gOHBM 2020$$wVirtual 000887871 245__ $$aNeuroimaging Analysis Methods For Naturalistic Data 000887871 260__ $$bZenodo$$c2020 000887871 300__ $$aN/A 000887871 3367_ $$2ORCID$$aCONFERENCE_PAPER 000887871 3367_ $$033$$2EndNote$$aConference Paper 000887871 3367_ $$2BibTeX$$aINPROCEEDINGS 000887871 3367_ $$2DRIVER$$aconferenceObject 000887871 3367_ $$2DataCite$$aOutput Types/Conference Paper 000887871 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1605789593_4356 000887871 500__ $$aAll content is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. 000887871 520__ $$aVersion 1.0 of the Naturalistic-Data.org educational course. Naturalistic-Data.org is an open access online educational resource that provides an introduction to analyzing naturalistic functional neuroimaging datasets using Python. Naturalistic-Data.org is built using Jupyter-Book and provides interactive tutorials for introducing advanced analytic techniques . This includes functional alignment, inter-subject correlations, inter-subject representational similarity analysis, inter-subject functional connectivity, event segmentation, natural language processing, hidden semi-markov models, automated annotation extraction, and visualizing high dimensional data. The tutorials focus on practical applications using open access data, short open access video lectures, and interactive Jupyter notebooks. All of the tutorials use open source packages from the python scientific computing community (e.g., numpy, pandas, scipy, matplotlib, scikit-learn, networkx, nibabel, nilearn, brainiak, hypertoos, timecorr, pliers, statesegmentation, and nltools). The course is designed to be useful for varying levels of experience, including individuals with minimal experience with programming, Python, and statistics. 000887871 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0 000887871 588__ $$aDataset connected to DataCite 000887871 7001_ $$0P:(DE-HGF)0$$aManning, Jeremy$$b1 000887871 7001_ $$0P:(DE-HGF)0$$aBaldassano, Christopher$$b2 000887871 7001_ $$0P:(DE-HGF)0$$aVega, Alejandro de la$$b3 000887871 7001_ $$0P:(DE-HGF)0$$aFleetwood, Gordon$$b4 000887871 7001_ $$0P:(DE-HGF)0$$aGeerligs, Linda$$b5 000887871 7001_ $$0P:(DE-HGF)0$$aHaxby, James$$b6 000887871 7001_ $$0P:(DE-Juel1)179423$$aLahnakoski, Juha$$b7$$ufzj 000887871 7001_ $$0P:(DE-HGF)0$$aParkinson, Carolyn$$b8 000887871 7001_ $$0P:(DE-HGF)0$$aShappell, Heather$$b9 000887871 7001_ $$0P:(DE-HGF)0$$aShim, Won Mok$$b10 000887871 7001_ $$0P:(DE-HGF)0$$aWager, Tor$$b11 000887871 7001_ $$0P:(DE-HGF)0$$aYarkoni, Tal$$b12 000887871 7001_ $$0P:(DE-HGF)0$$aYeshurun, Yaara$$b13 000887871 7001_ $$0P:(DE-HGF)0$$aFinn, Emily$$b14 000887871 773__ $$a10.5281/ZENODO.3937849 000887871 8564_ $$uhttp://naturalistic-data.org 000887871 909CO $$ooai:juser.fz-juelich.de:887871$$pVDB 000887871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179423$$aForschungszentrum Jülich$$b7$$kFZJ 000887871 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0 000887871 9141_ $$y2020 000887871 920__ $$lyes 000887871 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 000887871 980__ $$acontrib 000887871 980__ $$aVDB 000887871 980__ $$aI:(DE-Juel1)INM-7-20090406 000887871 980__ $$aUNRESTRICTED