TY - CONF AU - Chang, Luke AU - Manning, Jeremy AU - Baldassano, Christopher AU - Vega, Alejandro de la AU - Fleetwood, Gordon AU - Geerligs, Linda AU - Haxby, James AU - Lahnakoski, Juha AU - Parkinson, Carolyn AU - Shappell, Heather AU - Shim, Won Mok AU - Wager, Tor AU - Yarkoni, Tal AU - Yeshurun, Yaara AU - Finn, Emily TI - Neuroimaging Analysis Methods For Naturalistic Data PB - Zenodo M1 - FZJ-2020-04493 SP - N/A PY - 2020 N1 - All content is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. AB - Version 1.0 of the Naturalistic-Data.org educational course. Naturalistic-Data.org is an open access online educational resource that provides an introduction to analyzing naturalistic functional neuroimaging datasets using Python. Naturalistic-Data.org is built using Jupyter-Book and provides interactive tutorials for introducing advanced analytic techniques . This includes functional alignment, inter-subject correlations, inter-subject representational similarity analysis, inter-subject functional connectivity, event segmentation, natural language processing, hidden semi-markov models, automated annotation extraction, and visualizing high dimensional data. The tutorials focus on practical applications using open access data, short open access video lectures, and interactive Jupyter notebooks. All of the tutorials use open source packages from the python scientific computing community (e.g., numpy, pandas, scipy, matplotlib, scikit-learn, networkx, nibabel, nilearn, brainiak, hypertoos, timecorr, pliers, statesegmentation, and nltools). The course is designed to be useful for varying levels of experience, including individuals with minimal experience with programming, Python, and statistics. T2 - Annual meeting of the Organization for Human Brain Mapping 2020 CY - 23 Jun 2020 - 3 Jul 2020, Virtual (Virtual) Y2 - 23 Jun 2020 - 3 Jul 2020 M2 - Virtual, Virtual LB - PUB:(DE-HGF)8 DO - DOI:10.5281/ZENODO.3937849 UR - https://juser.fz-juelich.de/record/887871 ER -