000887893 001__ 887893
000887893 005__ 20220221143523.0
000887893 0247_ $$2doi$$a10.1016/j.jcis.2020.10.114
000887893 0247_ $$2Handle$$a2128/26639
000887893 0247_ $$2pmid$$a33198979
000887893 0247_ $$2WOS$$aWOS:000600220000005
000887893 037__ $$aFZJ-2020-04499
000887893 041__ $$aEnglish
000887893 082__ $$a540
000887893 1001_ $$0P:(DE-HGF)0$$aYeh, Yi-Qi$$b0
000887893 245__ $$aDiatom-inspired self-assembly for silica thin sheets of perpendicular nanochannels
000887893 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000887893 3367_ $$2DRIVER$$aarticle
000887893 3367_ $$2DataCite$$aOutput Types/Journal article
000887893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645445612_27838
000887893 3367_ $$2BibTeX$$aARTICLE
000887893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887893 3367_ $$00$$2EndNote$$aJournal Article
000887893 520__ $$aHypothesis: Multistage silicate self-organization into light-weight, high-strength, hierarchically pat-terned diatom frustules carries hints for innovative silica-based nanomaterials. With sodium silicate in a biomimetic sol-gel system templated by a tri-surfactant system of hexadecyltrimethylammonium bro-mide, sodium dodecylsulfate, and poly(oxyethylene-b-oxypropylene-b-oxyethylene) (P123), mesoporous silica nanochannel plates with perpendicular channel orientation are synthesized. The formation process, analogous to that of diatom frustules, is postulated to be directed by an oriented self-assembly of the block copolymer micelles shelled with charged catanionic surfactants upon silication.Experiments: The postulated formation process for the oriented silica nanochannel plates was investi-gated using time-resolved small-angle X-ray and neutron scattering (SAXS/SANS) and freeze fracture replication transmission electron microscopy (FFR-TEM).Findings: With fine-tuned molar ratios of the anionic, cationic, and nonionic surfactants, the catanionic combination and the nonionic copolymer form charged, prolate ternary micelles in aqueous solutions, which further develop into prototype monolayered micellar plates. The prolate shape and maximized surfactant adsorption of the complex micelles, revealed from combined SAXS/SANS analysis, are of crit-ical importance in the subsequent micellar self-assembly upon silicate deposition. Time-resolved SAXS and FFR-TEM indicate that the silicate complex micelles coalesce laterally into the prototype micellar nanoplates, which further fuse with one another into large sheets of monolayered silicate micelles of in-plane lamellar packing. Upon silica polymerization, the in-plane lamellar packing of the micelles fur-ther transforms to 2D hexagonal packing of vertically oriented silicate channels. The unveiled structural features and their evolution not only elucidate the previously unresolved self-assembly process of through-thickness silica nanochannels but also open a new line of research mimicking free-standing frus-tules of diatoms.
000887893 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000887893 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000887893 588__ $$aDataset connected to CrossRef
000887893 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000887893 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000887893 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000887893 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000887893 7001_ $$0P:(DE-HGF)0$$aSu, Chun-Jen$$b1
000887893 7001_ $$0P:(DE-HGF)0$$aWang, Chen-An$$b2
000887893 7001_ $$0P:(DE-HGF)0$$aLai, Ying-Chu$$b3
000887893 7001_ $$0P:(DE-HGF)0$$aTang, Chih-Yuan$$b4
000887893 7001_ $$0P:(DE-Juel1)141663$$aDi, Zhenyu$$b5
000887893 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b6$$ufzj
000887893 7001_ $$0P:(DE-HGF)0$$aSu, An-Chung$$b7
000887893 7001_ $$0P:(DE-HGF)0$$aJeng, U-Ser$$b8
000887893 7001_ $$0P:(DE-HGF)0$$aMou, Chung-Yuan$$b9$$eCorresponding author
000887893 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2020.10.114$$p647-659$$tJournal of colloid and interface science$$v584$$x0021-9797$$y2021
000887893 8564_ $$uhttps://juser.fz-juelich.de/record/887893/files/1-s2.0-S0021979720314545-main.pdf$$yOpenAccess
000887893 909CO $$ooai:juser.fz-juelich.de:887893$$popenaire$$popen_access$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver
000887893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b6$$kFZJ
000887893 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000887893 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000887893 9141_ $$y2020
000887893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28
000887893 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COLLOID INTERF SCI : 2018$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COLLOID INTERF SCI : 2018$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887893 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000887893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000887893 920__ $$lyes
000887893 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000887893 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000887893 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000887893 980__ $$ajournal
000887893 980__ $$aVDB
000887893 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000887893 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000887893 980__ $$aI:(DE-588b)4597118-3
000887893 980__ $$aUNRESTRICTED
000887893 9801_ $$aFullTexts