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Abstract

An a priori prediction of the flow properties of polydisperse rod-like macromolecules

is a prerequisite for the understanding of many industrial and biological processes. Us-

ing mixtures of two naturally monodisperse viruses, we create a benchmark bidisperse

suspension of rod-like colloids to test the effect of length bidispersity on the shear flow

behaviour. We find that the zero-shear viscosity is a non-linear function of the fraction

of long rods, due to the strong length dependence of the rotational dynamics, which

determine this quantity. With increasing concentration and fraction of long rods, the

shear thinning gets more pronounced, following the predictions of our recently pro-

posed theory which we extended for bidisperse mixtures. This theory allows for a

quantitative prediction of the flow properties of bi- and polydisperse mixtures of ideal

rods at least for moderate polydispersity.

1



Introduction

Purely steric interactions between colloidal rods can lead to a huge enhancement of the rheo-

logical response of many soft matter systems, already at very moderate concentrations. The

most prominent example in biology are filamentous particles like F-actin and microtubuli

which give strength to the cytoskeleton.1–3 There are, however, many more filamentous parti-

cles that can be extracted from nature, which strongly affect the rheology, such as viruses,4–6

polysaccharides,7–9 fibres from denatured proteins,10–12 and cellulose in various forms.13,14

The rod-like systems increasingly find applications, for example as viscosity modifiers in

consumer goods,15–17 because they are much more efficient to tailor the rheological response

than traditional materials. Vice versa, synthetic routes have been explored to produce stiff

self-assembled supra-molecular particles18,19 that can form biomimetic hydrogels20–22 and

synthetic rod-like systems, such as aramids23 and carbon nano-tubes,24 are the building

blocks in the production of strong fibres.25,26

The main rheological properties of semi-dilute isotropic suspensions of rods, the high

zero-shear viscosity and strong shear thinning behaviour, have been partly understood

showing qualitative agreement between theoretical predictions27–30 and experiments.7,31–34

It was established that the rheological response is governed by the rotational diffusion

coefficient, Dr. In semi-dilute suspensions of rods, the Doi-Edwards tube model29 pre-

dicts that: Dr = cD
(0)
r (νL3)−2, where ν is the number density, L the rod length, and

D
(0)
r = 3kBT ln (L/d) /πηsL

3 is the rotational diffusion coefficient of a single rod35 at infinite

dilution depending additionally on the rod diameter d and the viscosity of the solvent ηs.

This leads to a strong length32 and concentration9,31 dependence of the zero-shear viscosity:

η0 ∼ (νL3)3. This theory was further improved, taking into account head-on collisions of

rods at high concentrations,36 and stretching the range of concentrations for which the theory

applies.30 In a recent study, we have shown that the length and concentration dependence

of the zero-shear viscosity as well as the shear thinning can be fully described, when the full

shear-induced dilation of the confining tubes is taken into account additionally.37 To this
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end, we employed a library of monodisperse filamentous viruses, which we studied using a

combination of rheology and small angle neutron scattering.

As most systems introduced above are intrinsically polydisperse in length, experimental

studies face the challenge of correctly interpreting the observed flow behaviour.38–47 Also

for the case of entangled polydisperse linear polymers, a number of open questions remain

regarding the effect of polydispersity on the flow behaviour.48,49 Understanding the effect

of polydispersity on the flow behaviour is thus essential, for example, to rationally tune

the properties of polydisperse industrial rod-like polymer suspensions. For this purpose,

Marrucci and Grizzuti50,51 (MG) extended the theory of Doi and Edwards,29,52 originally

pioneered by Hess28 and later rewritten (exchanging the unknown mean-field potential be-

tween rods by excluded volume interactions) by Dhont and Briels.53 MG theory can be

subsumed under two main premises: First, the zero-shear viscosity and the shear thinning of

rods depend on the rod length, such that longer rods have a higher zero-shear viscosity than

shorter ones but achieve better orientational ordering than their short counterparts, leading

to a stronger shear thinning behaviour. Second, the fastest diffusion process determines the

low shear rate behaviour, since the presence of shorter rods in the mixture speeds up the

rotation of the longer rods, but the presence of longer rods does not slow down the shorter

rods,54 similar to the relaxation process found in entangled linear bidisperse blends of flexible

polymers.48 This leads to a zero-shear viscosity increasing linearly with the decreasing con-

tent of the shorter species. As a result, the short rods dominate over the long ones in the low

shear rate regime, while at high shear rates, the longer rods help the orientational ordering

of the short species. The second of these assumptions, however, has been disputed by Larson

and Mead,54 who demonstrated that the dynamics of both rod species in the quasi-linear

deformation regime are equally important, since the longer species slows the rotation of the

shorter one down, while the presence of shorter species allows for a relatively faster rotation

of the longer one.

In this work, we use our benchmark system of filamentous viruses to demonstrate that
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Larson and Mead had the correct idea for modifying the MG theory and we make the

suggested changes explicit, using our recently developed extension to finite shear rates.37

For this purpose, we use suspensions of monodisperse fd virus (L=0.88 µm, Lp=2.8±0.7 µm)

and pf1 virus (L=1.96 µm, Lp=2.8±0.7 µm) and create a controlled length bidispersity by

stoichiometric mixing, keeping the overall volume fraction constant. We study the effect of

bidispersity on the shear flow behaviour of these suspensions in the semi-dilute concentration

regime. While the shear thinning as predicted by the MG theory is correct, our experiments

suggest that the zero-shear viscosity is not a linear function of the content of the shorter

species. Therefore, we propose a different mixing rule for the rotational diffusivity of the

bidisperse system based on Larson and Mead’s idea, resulting in a non-linear interdependence

of zero-shear viscosity and content of the shorter particles. Together with our recently

proposed pre-factor for the rotational diffusion coefficient,37 we quantitatively predict the

complete shear flow behaviour of the bidisperse mixtures.

The paper is structured as follows: First, the Marrucci-Grizzuti and the Larson-Mead

theories are described and integrated with our recently improved theory for sheared rods.

Then, we compare our theoretical results to the rheological data in the linear visco-elastic

and non-linear shear thinning regime. Finally, we discuss the results.

Theory

We start the theory section by revisiting the theory for dispersions of monodisperse rods,

which we recently extended to describe the zero-shear viscosity as well as the shear thinning

behaviour as a function of concentration and length.37 We will then implement this theory

in the original Marrucci and Grizzuti (MG) theory50,51 and the more recent approach by

Larson and Mead (LM).54

From the full Yvon-Born-Green (YBG) hierarchy55,56 of Smoluchowski equations57 for

rigid large aspect-ratio rods, Dhont and Briels53 derived an equation of motion for the
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orientational ordering tensor S of rods subject to a velocity gradient Γ:

dS

dt
= −6D(0)

r

[
S− 1

3
I +

π

4
νdL2

(
S(4) : S− S · S

)]
+ Γ · S + S · ΓT − 2S(4) : E , (1)

where I is the unit tensor, d the thickness of the rods, and E is the rate of strain tensor.

The pre-requisites for their result are an equilibrium pair-correlation function (based on the

Maier-Saupe potential), truncated at the pair level,57,58 and a constant rotational diffusion

coefficient, D
(0)
r . Equation 1 is analytically solvable by using the closure relation:

S(4) : A =
1

5
[S ·A + A · ST − S · S ·A−A · S · S

+ 2S ·A · S + 3SS : A] (2)

for the fourth order alignment tensor S(4), where A can be any symmetrical tensor. Together

with their expression for the stress tensor of the liquid,

Σ = 2ηsE + 3νkBT [S− 1

3
I +

π

4
νdL2

(
S(4) : S− S · S

)
+

1

6D
(0)
r

(
S(4) : E− 1

3
IS : E

)
] , (3)

where ηs is the solvent viscosity, and kBT is the thermal energy, all visco-elastic response

functions of a rod-like suspension can be calculated from the molecules orientational be-

haviour under flow.

We extended this theoretical framework, based on our earlier experimental investigations

on quasi-ideal suspensions of rod-like colloids.37,59 Since the YBG hierarchy is truncated

at the pair-level and the pair-correlation function is flow independent, equation 1 does not

correctly predict the zero-shear viscosity and the strong shear thinning behaviour of semi-

dilute suspensions of rods. Therefore, we include both effects into the definition of an

effective rotational diffusion coefficient, interpolating between the pre-averaged rotational
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diffusion coefficient introduced by Doi and Edwards,29 which we expanded in terms of S,

and D
(0)
r :

Deff
r =

D
(0)
r

1 + 1
c

[
5
4
νL3

(
1− 3

5
S : S− 2

5
(S : S)2)]2 , (4)

where we have experimentally determined37 the pre-factor c = 1.1x103. Using this expression

instead of D
(0)
r in equation 1, we achieve a correct diffusion coefficient for low and high

concentrations and further incorporate a full dilation of the tube at high shear rates. For

both high shear rates and low concentrations in terms of number densities, we thus find

Deff
r → D

(0)
r . At high shear rates, this limiting value assures a substantial increase in the

rotational motility of the particles that allows for the strong shear thinning we observe

experimentally.

We extend this theory to bidisperse mixtures of rods first by employing the Marrucci-

Grizzuti (MG) extension.50,51 We can determine the number density, ν(m), of the mixture by

the following linear mixing rule:

ν(m) = ρν1 + (ρ− 1)ν2 , (5)

where ρ is called the mixing parameter from now on. For both of the i = {1, 2} species in

the mixture, with lengths Li and number densities νi, we can write the equation of motion

for their individual ordering tensors, Si, as follows:

dSi

dt
= −6Deff

r,i

[
Si −

1

3
I +

π

4
dLi

2∑
j=1

νjLj

(
S

(4)
i : Sj − Sj · Si

)]
+ Γ · Si + Si · ΓT − 2S

(4)
i : E . (6)
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Accordingly, the stress tensor becomes:

Σ = 2ηsE + 3kBT
2∑

i=1

νi[Si −
1

3
I

+
π

4
dLi

2∑
j=1

νjLj

(
S

(4)
i : Sj − Sj · Si

)
+

1

6D
(0)
r,i

(
S

(4)
i : E− 1

3
ISi : E

)
] . (7)

The effective rotational diffusion coefficients of both species in the MG framework read:

Deff
r,i =

D
(0)
r,i

1 + 1
c
f

, (8)

with the MG mixing rule:

f = Li

[
5

4

2∑
j=1

νjLj

(
1− 3

5
Si : Sj

)]
×

× [
5

4

∑
j≤i

νjL
4
j

(
1− 3

5
Si : Sj

)
+

5

4
L4
i

∑
j>i

νjLj

(
1− 3

5
Si : Sj

)
] , (9)

based on the assumption that the short species dominates over the long one.

We also extend our theory by applying the suggestion of Larson and Mead (LM),54 where

it is the average length of the rods in the mixture that determines both the tube size as well

as the diffusivity of the rods. In this case, we propose the following effective rotational

diffusion coefficient instead of equation 8:

Deff
r,i =

D
(0)
r,i

1 + 1
c

[
5
4

∑2
j=1 νjL

3
j

(
1− 3

5
Si : Sj − 2

5
(Si : Sj)

2)]2 , (10)

where D
(0)
r,i = 3kBT ln (Li/d) /πηsL

3
i . So, we essentially assume that both species are equally
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important. In equilibrium, the second term in the denominator simplifies to:

1

c

[
2∑

j=1

νjL
3
j

]2

. (11)

Together, equations 6, 7, and 10 build a theoretical framework which allows for a numerical

calculation of the visco-elastic material functions of length-bidisperse mixtures of rigid rods

and their orientational ordering under flow, characterized by the largest eigenvalue of the

orientational ordering tensor of the whole system, λ1, or the orientational order parameter,

〈P2〉 = (3λ1 − 1)/2. Here, we focus on the simple shear flow behaviour of semi-dilute

suspensions, for which the velocity gradient tensor and the rate of strain tensor are well-

known and the orientational closure relation, equation 2, holds.53,60

FIG. 1 shows two model calculations of the viscosity, η, and orientational order parameter,

〈P2〉, as a function of the shear rate, γ̇, for ϕ = 5.4x10−3, T = 25oC, ηs = 8.9x10−4, and d =

10.5 nm for length-bidisperse mixtures of L = 1.96 µm (black) and L = 0.88 µm (light grey).

The depicted curves correspond to mixing parameters of ρ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1},

shaded from light grey for ρ = 0 to black for ρ = 1. The result in FIG. 1(a) illustrates

the mixing of ordering and viscosity according to MG theory, using equations 6, 7, and 8.

The result in FIG. 1(b) shows the outcome of the approach suggested by Larson and Mead,

combining equations 6, 7, and 10.

Whilst the orientational ordering (dotted lines in FIG 1) smoothly changes for the LM

theory, the MG theory predicts a pronounced bimodal ordering for intermediate mixing

parameters with an inflection point of the curve located around a shear rate of 3 s−1, roughly

corresponding to the bare Péclet number, Pe(0) = γ̇/D
(0)
r = 1, for the long species. In the MG

theory, this marks the shear rate, at which the long species is fully oriented and dominates

the rheological behaviour, as indicated by the curves for 〈P2〉 of the long (red) and short

(blue) species which results in the purple bimodal curve in FIG 1(a). Further, comparing

the ordering of the long species alone (black dotted) to its ordering in presence of 50% of
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Figure 1: Viscosity (full lines) and orientational order parameter (dotted lines) from (a) MG
theory and (b) the new theory for bidisperse mixtures of rods at ϕ = 5.4x10−3, following
LM, with varying content of the long particle, shaded from 100% long (black) to 0% long,
or 100% short (light grey). The purple ordering in (a) for ρ = 0.5 results from the ordering
of the long species (red) and the short species (blue).

the short species (red dotted), and the ordering of the short species alone (pale grey dotted)

to its ordering in the presence of 50% of the long species (blue dotted), we can clearly see

the predicted dominance of the long species over the short one at intermediate to high shear

rates.

Accordingly, the viscosity curves (full lines in FIG. 1) in the MG theory for intermediate

mixing parameter have a bimodal shape resulting from the inflection in the orientational

ordering. Additionally, we find a zero-shear viscosity, increasing linearly with the mixing

parameter, and, therefore, also with the increasing content of the long species.

In contrast, the LM based theory, shown in FIG. 1(b), neither predicts inflection points
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of orientational ordering, nor of the viscosity curves. Additionally, the zero-shear viscosity

is a non-linear function of the content of the long species.

Experiments and Materials

Experiments

For our experimental investigation, we used a strain-controlled ARES LS rheometer (TA

Instruments, Newcastle, USA) equipped with a single wall Couette cell of 1 mm gap width.

After loading the sample, we applied 1 min of pre-shear at 100 s−1, and waited for 10 min

for orientational equilibration, to erase possible effects from sample loading. We conducted

step rate tests at constant shear rates in the range γ̇ ∈ [0.001, 1000] s−1, measuring the shear

stress, Σ21, as a function of time, see FIG. 2. After an initial re-orientation process of the

rods, marked by an overshoot of Σ21 with an amplitude depending on the shear rate, the

stress remains constant. We calculate the sample viscosity, η = Σ21/γ̇, for every shear rate

in the indicated range from a time averaged value of Σ21 in this constant regime.

Figure 2: Shear stress as a function of time for Pf1 virus (L=1.96 µm, Lp = 2.9 ± 0.7 µm)
at a concentration of 6.8 mg/ml for three different shear rates: γ̇ = 1, 16, 512 s−1.
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Materials

Fd virus was amplified in an infected XL-1 blue bacteria strain of Escherichia coli, nourished

from Luria-Bertani broth,61,62 following a standard biological protocol.63 Pf1 virus was pur-

chased from ASLA Biotech, Riga, Latvia. After purification by ultra-centrifugation, both

species were suspended in Trizma buffer, adjusted to pH 8.3, containing deionized water with

20 mM/l Trizma base and 90 mM/l NaCl, amounting to an ionic strength of 100 mM. At

this ionic strength, the effective diameter of our rods is 10.5 nm, including the Debye double

layer.64 Both suspensions were concentrated to the nematic liquid crystalline state and sub-

sequently diluted to their isotropic binodal points, LϕI/deff = 4.61 for fd and LϕI/deff = 8.37

for Pf1, comparing well to the theoretical prediction by Chen.65 This confirms their different

contour lengths of L = 0.88 µm for fd and L = 1.96 µm for Pf1. The persistence length of

both species is 2.8±0.7 µm.66

From the nematic stock suspensions, we produced two semi-dilute suspensions of 2.3 and

6.8 mg/ml. At these constant volume fractions, we mixed the two species according to the

mixing rule ν(m) = ρν(pf1) + (ρ− 1)ν(fd), where ν is the number density of the rods.

Results and Discussion

The non-linear viscosity of bidisperse mixtures of rods in the semi-dilute concentration

regime, obtained from the steady-state shear stress values, see FIG. 2, is shown as a func-

tion of shear rate in FIG. 3 for constant weight fractions of (a) 2.3 mg/ml and (b) 6.8

mg/ml. The mixing parameters are ρ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} for the low concentra-

tion and ρ = {0, 0.1, 0.3, 0.5, 0.7, 0.8, 1} for the high concentration, shaded from black, 100%

L = 1.96 µm to light grey, 100% L = 0.88 µm.

We employ the Carreau equation67 as a fitting function, shown as lines in FIG 3,

η = ηs + (η0 − ηs)/(1 + Aγ̇2)B , (12)
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Figure 3: Shear viscosity as a function of shear rate for (a) 2.4 mg/ml and (b) 6.8 mg/ml
of bidisperse mixtures of Pf1 (L=1.96 µm, Lp = 2.9 ± 0.7 µm) and fd (L=0.88 µm, Lp =
2.9 ± 0.7 µm). The lines are Carreau fits with parameters η0, and B shown in FIG. 4
and A = {14, 10, 7, 5.5, 5, 0.6, 0.1} sec. in (a) and A = {14, 10, 8.5, 7, 5, 0.6, 0.3} sec. in (b)
ordered from black (100% long) to light grey (100% short).

with fit parameters η0, A, and B, in order to obtain the zero-shear viscosities, η0, and shear

thinning parameters, B, as a function of the mixing parameter, ρ, see FIG. 4.

We compare the numbers for η0 and B, obtained from fitting, to the two different the-

oretical approaches: the MG theory, combining equations 6, 7, and 8, and the LM based

theory, combining equations 6, 7, and 10, for (a) ϕ = 5.4x10−3, and (b) ϕ = 1.78x10−2, with

T = 25oC, ηs = 8.9x10−4, and d = 10.5 nm for length-bidisperse mixtures of L = 1.96 µm

(dark symbols) and L = 0.88 µm (light symbols). As FIG. 4 indicates, the suspensions at

both concentrations show an increase in zero-shear viscosity as well as in the shear thinning

parameter with increasing mixing parameter, ρ, which is proportional to the content of the
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Figure 4: Shear thinning parameter (blue) and zero-shear viscosity (red) as a function of
the mixing parameter obtained from the Carreau fits in FIG. 3 for (a) 2.4 mg/ml and (b)
6.8 mg/ml. Full lines show the MG theory, dotted lines the LM theory. The theoretical B
values are mean values between γ̇ = 0.1 and γ̇ = 100, except for 100% fd, where the mean
value is taken between γ̇ = 50 and γ̇ = 200.

long particle, Pf1. We observe that the shear thinning parameter increases more or less

linearly with the mixing parameter, while the increase of the zero-shear viscosity is clearly

non-linear. As mentioned above, the MG theory predicts a linear increase of both quantities

with increasing content of the long species (or decreasing content of the short species) in the

bidisperse mixture. This results from a dominance of the short species over the long one in

terms of the rotational diffusion coefficient, as observed for flexible polymers.48 In the LM

based approach, both species contribute evenly to the hindrance of rotation. This results in

a non-linear increase of the zero-shear viscosity with the content of the longer particle, but

since the longer particle dominates the shear thinning behaviour, see FIG 1(a), the mean

shear thinning parameter scales linearly with the mixing parameter and therefore depends
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mainly on the content of the long species. Though the LM based theory treats both species

as equally important, it is indeed the long species which governs the shear thinning behaviour

at higher shear rates corresponding to bare Péclet numbers above Pe(0) = γ̇/D
(0)
r = 1 for the

long species. Thus, the prediction by MG theory equals the prediction of the LM based ap-

proach for the shear thinning parameter. Therefore, both approaches are in good agreement

with the effect of shear thinning we measure in our systems.

The zero-shear viscosity of bidisperse mixtures of particles with aspect ratios as high as

83.8 and 186.7, on the contrary, is only captured by the LM approach. This stands in marked

contrast to the reported behaviour of entangled bidisperse linear polymer blends, where the

relaxation time of the longer species is significantly changed by the presence of the shorter

species but not vice versa.48 We remark that the MG theory is likely still correct for the case

of bidisperse mixtures of two species with very different aspect ratios. If the aspect ratio of

the long particles is much higher than that of the short particles, the particle dynamics of

the mixture most likely would scale linearly with the content of the long particles. We would

expect that for a mixture where one species is smaller than the mesh size of the network

formed by the other species, MG theory applies, since for such a system, the smaller rods

cannot effectively entangle with the larger ones. For the systems tested here, with volume

fractions of ϕ = 5.4 × 10−3, and 1.78 × 10−2, far above the overlap concentration, we can

estimate the equilibrium mesh size, ξ = d(2
3
ϕ)−0.5, to be 175 nm, and 96 nm. With a length

of the smaller particles of 880 nm, this threshold is clearly exceeded, such that both species

effectively entangle with one another in the low shear rate regime. It remains to be tested

whether there exists such a threshold for the difference between the aspect ratios, above

which our theory for the rotational diffusivity crosses over to the MG theory. With our

experimental systems at hand, such a test is not feasible.

Finally, we plot the viscosity curves of the LM based theory together with our experi-

mental results in FIG. 5 in order to test if the functional shape of the curve is correct.

We find a good agreement between theory and experiment for all mixtures over a large
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Figure 5: Viscosity as a function of shear rate for (a) 2.4 mg/ml, and (b) 6.8 mg/ml for
bidisperse mixtures of (black) Pf1 (L=1.96 µm, Lp = 2.9 ± 0.7 µm) and (light grey) fd
(L=0.88 µm, Lp = 2.9± 0.7 µm). The lines are predictions from the new theory.

shear rate range. At very high shear rates, we observe a minor disagreement between our

predictions for the viscosity and the experimental results for higher content of the long

species in the case of the lower concentration, shown in FIG. 5(a). This could be due to the

effect of flexibility especially of Pf1, as we discussed earlier.37 Neither of the viscosity curves

at intermediate mixing parameter display a clear bimodality, and the zero-shear viscosities

scale clearly non-linearly with the content of the long particle, as predicted by our proposed

theory. This is an indication that it is indeed the average length of particles in the mixture

that dictates the low shear rate viscosity, while above a certain shear rate, coinciding with

the bare Péclet number, Pe(0) = γ̇/D
(0)
r = 1, of the long particles, the viscosity of the mixture

is governed by the alignment of the longer rods as a function of shear rate. At very high

shear rates, the particles seem to shear thin slightly more than we predicted, resulting in a
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decreasing viscosity over the entire measurable shear rate range. For this reason, we propose

the following picture for bidisperse rods of high aspect ratios: At very low shear rates, the

particle dynamics are quenched according to the tube model by Doi and Edwards.29 The

polydispersity of both the tubes and the rods leads to an averaging effect of the governing

dynamics, determining the visco-elastic behaviour such that both species hinder each other

in exactly the same fashion, as suggested by Larson and Mead,54 and it is only the average

length of the particles in the mixture which dictates the observable behaviour. At inter-

mediate shear rates, the picture by Marrucci and Grizzuti51,51 seems to be correct and it

is the longer particles in the bidisperse mixture that govern the shear thinning behaviour

due to their relatively high sensitivity to the applied flow field as compared to the shorter

rods. At very high shear rates, the influence of hydrodynamics cannot be ignored, as em-

phasized by Marrucci and Grizzuti.51 At high Péclet numbers, the theories both predict

a length-dependent finite plateau value of the shear viscosity, qualitatively agreeing with

the experimental results of Bricker et al.68 Due to limitations of the used Couette geom-

etry, we could not detect the anticipated high shear rate plateau, and the observed shear

thinning continues above shear rates, where the theory predicts the final plateau to occur.

Despite these minor difficulties, we conclude that the Dhont-Briels53 stress tensor, modified

for bidisperse systems, equation 7, describes the observed rheological response well. These

results can thus be used to predict the flow response of polydisperse systems, which are of

large importance in industrial applications and biological processes, by taking the actual

length distribution of particles into account and accordingly expanding the summation in

equations 6, 7, and 10 to i = [1, N ] components.

Conclusions

We conclude from our experimental investigation of two constant volume fraction bidisperse

mixtures of high aspect ratio rods that the rheological response of these mixtures is not
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determined by the dynamics or alignment of the shorter species alone, as suggested by

Marrucci-Grizzuti theory. Instead, it is the average particle length in the mixture that

governs the observable behaviour, as suggested by Larson and Mead. We combined this

latter mixing rule with our recently extended theory for rods in shear flow in the semi-dilute

concentration regime, employing the experimentally determined pre-factor for the rotational

diffusivity, to predict the zero-shear viscosities as well as the shear thinning. The quantitative

correspondence between the calculated and measured zero-shear viscosity and shear thinning

over a very broad range of shear rates for all compositions of short and long rods confirms

the suggested approach. Our findings, thus, point towards a rational prediction of the flow

behaviour of polydisperse rod-like systems. The proposed mixing rule is expected to hold for

many of the aforementioned bi- and polydisperse rod-like systems with high aspect ratios,

concentrations far above the overlap concentration, and moderate polydispersity. In the case

of very different aspect ratios, i. e., in a system with very broad polydispersity, we remark

that the mixing rule of the original MG theory is likely still correct, as the hindrance of

rotation of the long species should cease to affect the very short particles when their contour

length becomes small compared to the mesh size of the entanglements formed by the large

species.
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