001     887905
005     20220930130257.0
024 7 _ |a 10.1038/s41598-020-76582-5
|2 doi
024 7 _ |a 2128/26200
|2 Handle
024 7 _ |a 33199768
|2 pmid
024 7 _ |a WOS:000595259200008
|2 WOS
037 _ _ |a FZJ-2020-04511
082 _ _ |a 600
100 1 _ |a Rincón Montes, V.
|0 P:(DE-Juel1)165188
|b 0
245 _ _ |a Development and in vitro validation of flexible intraretinal probes
260 _ _ |a [London]
|c 2020
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614334016_6270
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The efforts to improve the treatment efficacy in blind patients with retinal degenerative diseases would greatly benefit from retinal activity feedback, which is lacking in current retinal implants. While the door for a bidirectional communication device that stimulates and records intraretinally has been opened by the recent use of silicon-based penetrating probes, the biological impact induced by the insertion of such rigid devices is still unknown. Here, we developed for the first time, flexible intraretinal probes and validated in vitro the acute biological insertion impact in mouse retinae compared to standard silicon-based probes. Our results show that probes based on flexible materials, such as polyimide and parylene-C, in combination with a narrow shank design 50 µm wide and 7 µm thick, and the use of insertion speeds as high as 187.5 µm/s will successfully penetrate the retina, reduce the footprint of the insertion to roughly 2 times the cross-section of the probe, and induce low dead cell counts, while keeping the vitality of the tissue and recording the neural activity at different depths.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gehlen, Jana
|0 P:(DE-Juel1)169371
|b 1
|u fzj
700 1 _ |a Ingebrandt, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mokwa, W.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Walter, P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller, Frank
|0 P:(DE-Juel1)131939
|b 5
700 1 _ |a Offenhäusser, A.
|0 P:(DE-Juel1)128713
|b 6
|e Corresponding author
773 _ _ |a 10.1038/s41598-020-76582-5
|0 PERI:(DE-600)2615211-3
|p 19836
|t Scientific reports
|v 10
|y 2020
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/887905/files/SN-2020-00398-b.pdf
856 4 _ |u https://juser.fz-juelich.de/record/887905/files/s41598-020-76582-5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887905
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165188
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169371
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131939
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Physical Basis of Diseases
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2018
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21