Hauptseite > Publikationsdatenbank > Machine learning for psychiatry: getting doctors at the black box? > print |
001 | 887913 | ||
005 | 20211028141343.0 | ||
024 | 7 | _ | |a 10.1038/s41380-020-00931-z |2 doi |
024 | 7 | _ | |a 1359-4184 |2 ISSN |
024 | 7 | _ | |a 1476-5578 |2 ISSN |
024 | 7 | _ | |a 2128/26984 |2 Handle |
024 | 7 | _ | |a altmetric:94115048 |2 altmetric |
024 | 7 | _ | |a 33173196 |2 pmid |
024 | 7 | _ | |a WOS:000588233100003 |2 WOS |
037 | _ | _ | |a FZJ-2020-04515 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Hedderich, Dennis M. |0 0000-0001-8994-5593 |b 0 |
245 | _ | _ | |a Machine learning for psychiatry: getting doctors at the black box? |
260 | _ | _ | |a London |c 2021 |b Macmillan |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1635420818_13558 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent developments in the field of machine-learning have spurred high hopes for diagnostic support for psychiatric patients based on brain MRI. But while technical advances are undoubtedly remarkable, the current trajectory of mostly proof-of-concept studies performed on retrospective, often repository-derived data, may not be well suited to yield a substantial impact in clinical practice. Here we review these developments and challenges, arguing for the need of stronger involvement of and input from medical doctors in order to pave the way for machine-learning in clinical psychiatry. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1038/s41380-020-00931-z |0 PERI:(DE-600)1502531-7 |p 23-25 |t Molecular psychiatry |v 26 |y 2021 |x 1476-5578 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/887913/files/HedderichEickhoff_Manuscript_R1.pdf |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/887913/files/s41380-020-00931-z.pdf |y Restricted |z StatID:(DE-HGF)0599 |
909 | C | O | |o oai:juser.fz-juelich.de:887913 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131678 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL PSYCHIATR : 2018 |d 2020-08-25 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b MOL PSYCHIATR : 2018 |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-08-25 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|