001     887913
005     20211028141343.0
024 7 _ |a 10.1038/s41380-020-00931-z
|2 doi
024 7 _ |a 1359-4184
|2 ISSN
024 7 _ |a 1476-5578
|2 ISSN
024 7 _ |a 2128/26984
|2 Handle
024 7 _ |a altmetric:94115048
|2 altmetric
024 7 _ |a 33173196
|2 pmid
024 7 _ |a WOS:000588233100003
|2 WOS
037 _ _ |a FZJ-2020-04515
082 _ _ |a 610
100 1 _ |a Hedderich, Dennis M.
|0 0000-0001-8994-5593
|b 0
245 _ _ |a Machine learning for psychiatry: getting doctors at the black box?
260 _ _ |a London
|c 2021
|b Macmillan
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635420818_13558
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent developments in the field of machine-learning have spurred high hopes for diagnostic support for psychiatric patients based on brain MRI. But while technical advances are undoubtedly remarkable, the current trajectory of mostly proof-of-concept studies performed on retrospective, often repository-derived data, may not be well suited to yield a substantial impact in clinical practice. Here we review these developments and challenges, arguing for the need of stronger involvement of and input from medical doctors in order to pave the way for machine-learning in clinical psychiatry.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41380-020-00931-z
|0 PERI:(DE-600)1502531-7
|p 23-25
|t Molecular psychiatry
|v 26
|y 2021
|x 1476-5578
856 4 _ |u https://juser.fz-juelich.de/record/887913/files/HedderichEickhoff_Manuscript_R1.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/887913/files/s41380-020-00931-z.pdf
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:juser.fz-juelich.de:887913
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL PSYCHIATR : 2018
|d 2020-08-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MOL PSYCHIATR : 2018
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21