001     887914
005     20220228143453.0
024 7 _ |a 10.1002/hbm.25275
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/27157
|2 Handle
024 7 _ |a 33165996
|2 pmid
024 7 _ |a WOS:000587466600001
|2 WOS
037 _ _ |a FZJ-2020-04516
082 _ _ |a 610
100 1 _ |a Binder, Ellen
|0 P:(DE-Juel1)131716
|b 0
245 _ _ |a Cortical reorganization after motor stroke: A pilot study on differences between the upper and lower limbs
260 _ _ |a New York, NY
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646034971_4189
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The authors would like to thank their volunteers and Dr Marc Tittgemeyer together with the MR staff for their support. E. B. was funded by the Medical Faculty, University of Cologne (3615/0129/31). L. J. V. was supported by the SAGE Center for the Study of the Mind and Brain at the University of California, Santa Barbara. C. G. was supported by grants from the Deutsche Forschungsgemeinschaft (DFG, GR 3285/2‐1; GR3285/5‐1KFO219‐TP8). The study was additionally supported by the University of Cologne Emerging Groups Initiative (CONNECT Group, C. G., G. R. F.) implemented into the Institutional Strategy of the University of Cologne and the German Excellence Initiative. S. B. E. was supported by the Deutsche Forschungsgemeinschaft (EI 816/4‐1, LA 3071/3‐1, EI 816/6‐1); the National Institute of Mental Health (R01‐MH074457); the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain;” and the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 604102 (Human Brain Project). G. R. F. gratefully acknowledges additional support from the Marga und Walter Boll‐Stiftung. Open access funding enabled and organized by Projekt DEAL. [Correction added on November 26, 2020 , after first online publication: Projekt Deal funding statement has been added.]
520 _ _ |a Stroke patients suffering from hemiparesis may show substantial recovery in the first months poststroke due to neural reorganization. While reorganization driving improvement of upper hand motor function has been frequently investigated, much less is known about the changes underlying recovery of lower limb function. We, therefore, investigated neural network dynamics giving rise to movements of both the hands and feet in 12 well-recovered left-hemispheric chronic stroke patients and 12 healthy participants using a functional magnetic resonance imaging sparse sampling design and dynamic causal modeling (DCM). We found that the level of neural activity underlying movements of the affected right hand and foot positively correlated with residual motor impairment, in both ipsilesional and contralesional premotor as well as left primary motor (M1) regions. Furthermore, M1 representations of the affected limb showed significantly stronger increase in BOLD activity compared to healthy controls and compared to the respective other limb. DCM revealed reduced endogenous connectivity of M1 of both limbs in patients compared to controls. However, when testing for the specific effect of movement on interregional connectivity, interhemispheric inhibition of the contralesional M1 during movements of the affected hand was not detected in patients whereas no differences in condition-dependent connectivity were found for foot movements compared to controls. In contrast, both groups featured positive interhemispheric M1 coupling, that is, facilitation of neural activity, mediating movements of the affected foot. These exploratory findings help to explain why functional recovery of the upper and lower limbs often develops differently after stroke, supporting limb-specific rehabilitative strategies.Keywords: dynamic causal modeling; effective connectivity; fMRI; interhemispheric inhibition; motor recovery; plasticity; rehabilitation.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|f FP7-ICT-2013-FET-F
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Leimbach, Martha
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pool, Eva-Maria
|0 P:(DE-Juel1)165759
|b 2
700 1 _ |a Volz, Lukas J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 5
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 6
|e Corresponding author
773 _ _ |a 10.1002/hbm.25275
|g p. hbm.25275
|0 PERI:(DE-600)1492703-2
|n 4
|p 1013-1033
|t Human brain mapping
|v 42
|y 2021
|x 1097-0193
856 4 _ |u https://juser.fz-juelich.de/record/887914/files/hbm.25275.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887914
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2018
|d 2020-08-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21