000887925 001__ 887925
000887925 005__ 20220930130257.0
000887925 0247_ $$2doi$$a10.2138/am-2020-7479CCBY
000887925 0247_ $$2ISSN$$a0003-004X
000887925 0247_ $$2ISSN$$a1945-3027
000887925 0247_ $$2Handle$$a2128/26654
000887925 0247_ $$2altmetric$$aaltmetric:97081397
000887925 0247_ $$2WOS$$aWOS:000604401600009
000887925 0247_ $$2doi$$a10.2138/am-2020-7479ccby
000887925 037__ $$aFZJ-2020-04517
000887925 041__ $$aEnglish
000887925 082__ $$a540
000887925 1001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b0$$eCorresponding author
000887925 245__ $$aAtomic-scale Characterization of Commensurate and Incommensurate Vacancy Superstructures in Natural Pyrrhotites
000887925 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2021
000887925 3367_ $$2DRIVER$$aarticle
000887925 3367_ $$2DataCite$$aOutput Types/Journal article
000887925 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635947604_4688
000887925 3367_ $$2BibTeX$$aARTICLE
000887925 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887925 3367_ $$00$$2EndNote$$aJournal Article
000887925 520__ $$aPyrrhotites, characterized by the chemical formula Fe1–δS (0 < δ ≤ 1/8), represent an extended group of minerals that are derived from the NiAs-type FeS aristotype. They contain layered arrangements of ordered Fe vacancies, which are at the origin of the various magnetic signals registered from certain natural rocks and can act as efficient electrocatalysts in oxygen evolution reactions in ultrathin form. Despite extensive studies over the past century, the local structural details of pyrrhotite superstructures formed by different arrangements of Fe vacancies remain unclear, in particular at the atomic scale. Here, atomic-resolution high-angle annular dark-field imaging and nanobeam electron diffraction in the scanning transmission electron microscope are used to study natural pyrrhotite samples that contain commensurate 4C and incommensurate 4.91 ± 0.02C constituents. Local measurements of both the intensities and the picometer-scale shifts of individual Fe atomic columns are shown to be consistent with a model for the structure of 4C pyrrhotite, which was derived using X-ray diffraction by Tokonami et al. (1972). In 4.91 ± 0.02C pyrrhotite, 5C-like unequally sized nano-regions are found to join at anti-phase-like boundaries, leading to the incommensurability observed in the present pyrrhotite sample. This conclusion is supported by computer simulations. The local magnetic properties of each phase are inferred from the measurements. A discussion of perspectives for the quantitative counting of Fe vacancies at the atomic scale is presented.
000887925 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000887925 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
000887925 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x2
000887925 536__ $$0G:(DE-Juel-1)Z1422.01.18$$aDARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)$$cZ1422.01.18$$x3
000887925 588__ $$aDataset connected to CrossRef
000887925 7001_ $$0P:(DE-HGF)0$$aKoulialias, D.$$b1
000887925 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b2
000887925 7001_ $$0P:(DE-Juel1)170077$$aGehring, Markus$$b3
000887925 7001_ $$0P:(DE-HGF)0$$aPosfai, M.$$b4
000887925 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b5
000887925 7001_ $$0P:(DE-HGF)0$$aCharilaou, M.$$b6
000887925 7001_ $$0P:(DE-HGF)0$$aSchaueblin, R. E.$$b7
000887925 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b8
000887925 7001_ $$0P:(DE-HGF)0$$aLoeffler, J. F.$$b9
000887925 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b10
000887925 773__ $$0PERI:(DE-600)2045960-9$$a10.2138/am-2020-7479ccby$$n1$$p82–96$$tAmerican mineralogist$$v106$$x1945-3027$$y2021
000887925 8564_ $$uhttps://juser.fz-juelich.de/record/887925/files/7479JinPreprint.pdf$$yOpenAccess
000887925 8564_ $$uhttps://juser.fz-juelich.de/record/887925/files/am-2020-7479ccby.pdf$$yOpenAccess
000887925 8767_ $$82020OA7479$$92020-08-21$$d2020-10-02$$eHybrid-OA$$jZahlung erfolgt$$zUSD 4875,- 50-50 auf 68100, E 2310266, KST: 68000, DEA01243
000887925 8767_ $$82020OA747$$92020-08-21$$d2020-10-02$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr.: 1200157773, war FZJ-2020-02887
000887925 909CO $$ooai:juser.fz-juelich.de:887925$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000887925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b0$$kFZJ
000887925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b2$$kFZJ
000887925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170077$$aForschungszentrum Jülich$$b3$$kFZJ
000887925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b5$$kFZJ
000887925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b8$$kFZJ
000887925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
000887925 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000887925 9141_ $$y2021
000887925 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000887925 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887925 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM MINERAL : 2018$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887925 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000887925 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000887925 920__ $$lyes
000887925 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000887925 980__ $$ajournal
000887925 980__ $$aVDB
000887925 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000887925 980__ $$aAPC
000887925 980__ $$aUNRESTRICTED
000887925 9801_ $$aAPC
000887925 9801_ $$aFullTexts