001     887925
005     20220930130257.0
024 7 _ |a 10.2138/am-2020-7479CCBY
|2 doi
024 7 _ |a 0003-004X
|2 ISSN
024 7 _ |a 1945-3027
|2 ISSN
024 7 _ |a 2128/26654
|2 Handle
024 7 _ |a altmetric:97081397
|2 altmetric
024 7 _ |a WOS:000604401600009
|2 WOS
024 7 _ |a 10.2138/am-2020-7479ccby
|2 doi
037 _ _ |a FZJ-2020-04517
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 0
|e Corresponding author
245 _ _ |a Atomic-scale Characterization of Commensurate and Incommensurate Vacancy Superstructures in Natural Pyrrhotites
260 _ _ |a Alexandria, Va.
|c 2021
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635947604_4688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pyrrhotites, characterized by the chemical formula Fe1–δS (0 < δ ≤ 1/8), represent an extended group of minerals that are derived from the NiAs-type FeS aristotype. They contain layered arrangements of ordered Fe vacancies, which are at the origin of the various magnetic signals registered from certain natural rocks and can act as efficient electrocatalysts in oxygen evolution reactions in ultrathin form. Despite extensive studies over the past century, the local structural details of pyrrhotite superstructures formed by different arrangements of Fe vacancies remain unclear, in particular at the atomic scale. Here, atomic-resolution high-angle annular dark-field imaging and nanobeam electron diffraction in the scanning transmission electron microscope are used to study natural pyrrhotite samples that contain commensurate 4C and incommensurate 4.91 ± 0.02C constituents. Local measurements of both the intensities and the picometer-scale shifts of individual Fe atomic columns are shown to be consistent with a model for the structure of 4C pyrrhotite, which was derived using X-ray diffraction by Tokonami et al. (1972). In 4.91 ± 0.02C pyrrhotite, 5C-like unequally sized nano-regions are found to join at anti-phase-like boundaries, leading to the incommensurability observed in the present pyrrhotite sample. This conclusion is supported by computer simulations. The local magnetic properties of each phase are inferred from the measurements. A discussion of perspectives for the quantitative counting of Fe vacancies at the atomic scale is presented.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 2
536 _ _ |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)
|0 G:(DE-Juel-1)Z1422.01.18
|c Z1422.01.18
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Koulialias, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schnedler, Michael
|0 P:(DE-Juel1)143949
|b 2
700 1 _ |a Gehring, Markus
|0 P:(DE-Juel1)170077
|b 3
700 1 _ |a Posfai, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 5
700 1 _ |a Charilaou, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schaueblin, R. E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 8
700 1 _ |a Loeffler, J. F.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 10
773 _ _ |a 10.2138/am-2020-7479ccby
|0 PERI:(DE-600)2045960-9
|n 1
|p 82–96
|t American mineralogist
|v 106
|y 2021
|x 1945-3027
856 4 _ |u https://juser.fz-juelich.de/record/887925/files/7479JinPreprint.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/887925/files/am-2020-7479ccby.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887925
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)170077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM MINERAL : 2018
|d 2020-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21