000887927 001__ 887927
000887927 005__ 20240712113245.0
000887927 0247_ $$2doi$$a10.1016/j.powera.2020.100041
000887927 0247_ $$2Handle$$a2128/26206
000887927 0247_ $$2WOS$$aWOS:000658488500009
000887927 037__ $$aFZJ-2020-04519
000887927 082__ $$a621.3
000887927 1001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b0$$eCorresponding author
000887927 245__ $$aMultiple charging/discharging cycles of a rechargeable oxide battery – Electrochemistry and post-test analysis
000887927 260__ $$a[Amsterdam]$$bElsevier ScienceDirect$$c2020
000887927 3367_ $$2DRIVER$$aarticle
000887927 3367_ $$2DataCite$$aOutput Types/Journal article
000887927 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606823058_20257
000887927 3367_ $$2BibTeX$$aARTICLE
000887927 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887927 3367_ $$00$$2EndNote$$aJournal Article
000887927 520__ $$aA two-layer rechargeable oxide battery using a stack initially developed for solid oxide cells was operated for 2100 h with more than 1000 charging/discharging cycles. The operation temperature was 800 °C and the applied current density (on the solid oxide cell) was 150 mA cm−2. During operation, no electrochemical indications for degradation were measured. The voltages achieved during redox cycling were in good agreement with the equilibrium voltages of the envisaged corresponding phases. For the first time, a storage material based on the calcium–iron oxide with the richest iron content was used. Storage utilization was 86%, thereby reaching a capacity of 20.6 Ah per layer. Post-test analysis of the storage revealed mostly expected storage phases and sufficient remaining storage porosity.
000887927 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000887927 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000887927 588__ $$aDataset connected to CrossRef
000887927 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1
000887927 773__ $$0PERI:(DE-600)3022892-X$$a10.1016/j.powera.2020.100041$$gVol. 6, p. 100041 -$$p100041$$tJournal of power sources advances$$v6$$x2666-2485$$y2020
000887927 8564_ $$uhttps://juser.fz-juelich.de/record/887927/files/Invoice_OAD0000079839.pdf
000887927 8564_ $$uhttps://juser.fz-juelich.de/record/887927/files/1-s2.0-S266624852030041X-main.pdf$$yOpenAccess
000887927 8564_ $$uhttps://juser.fz-juelich.de/record/887927/files/ROB_1000_20201028.pdf$$yOpenAccess
000887927 8767_ $$8OAD0000079839$$92020-11-09$$d2020-12-01$$eAPC$$jZahlung erfolgt$$zFZJ-2020-04424, Belegnr. 1200159678
000887927 909CO $$ooai:juser.fz-juelich.de:887927$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000887927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b0$$kFZJ
000887927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000887927 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000887927 9141_ $$y2020
000887927 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887927 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887927 920__ $$lyes
000887927 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000887927 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000887927 9801_ $$aFullTexts
000887927 980__ $$ajournal
000887927 980__ $$aVDB
000887927 980__ $$aI:(DE-Juel1)IEK-1-20101013
000887927 980__ $$aI:(DE-Juel1)IEK-14-20191129
000887927 980__ $$aUNRESTRICTED
000887927 980__ $$aAPC
000887927 981__ $$aI:(DE-Juel1)IET-4-20191129
000887927 981__ $$aI:(DE-Juel1)IMD-2-20101013