001     887927
005     20240712113245.0
024 7 _ |a 10.1016/j.powera.2020.100041
|2 doi
024 7 _ |a 2128/26206
|2 Handle
024 7 _ |a WOS:000658488500009
|2 WOS
037 _ _ |a FZJ-2020-04519
082 _ _ |a 621.3
100 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 0
|e Corresponding author
245 _ _ |a Multiple charging/discharging cycles of a rechargeable oxide battery – Electrochemistry and post-test analysis
260 _ _ |a [Amsterdam]
|c 2020
|b Elsevier ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606823058_20257
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A two-layer rechargeable oxide battery using a stack initially developed for solid oxide cells was operated for 2100 h with more than 1000 charging/discharging cycles. The operation temperature was 800 °C and the applied current density (on the solid oxide cell) was 150 mA cm−2. During operation, no electrochemical indications for degradation were measured. The voltages achieved during redox cycling were in good agreement with the equilibrium voltages of the envisaged corresponding phases. For the first time, a storage material based on the calcium–iron oxide with the richest iron content was used. Storage utilization was 86%, thereby reaching a capacity of 20.6 Ah per layer. Post-test analysis of the storage revealed mostly expected storage phases and sufficient remaining storage porosity.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fang, Qingping
|0 P:(DE-Juel1)145945
|b 1
773 _ _ |a 10.1016/j.powera.2020.100041
|g Vol. 6, p. 100041 -
|0 PERI:(DE-600)3022892-X
|p 100041
|t Journal of power sources advances
|v 6
|y 2020
|x 2666-2485
856 4 _ |u https://juser.fz-juelich.de/record/887927/files/Invoice_OAD0000079839.pdf
856 4 _ |u https://juser.fz-juelich.de/record/887927/files/1-s2.0-S266624852030041X-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/887927/files/ROB_1000_20201028.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887927
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145945
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21