000887930 001__ 887930
000887930 005__ 20210130010709.0
000887930 0247_ $$2doi$$a10.1101/2020.04.20.046680
000887930 0247_ $$2Handle$$a2128/26220
000887930 0247_ $$2altmetric$$aaltmetric:80177885
000887930 037__ $$aFZJ-2020-04522
000887930 082__ $$a600
000887930 1001_ $$0P:(DE-Juel1)173931$$aVickery, Sam$$b0$$eCorresponding author
000887930 245__ $$aChimpanzee Brain Morphometry Utilizing Standardized MRI Preprocessing and Macroanatomical Annotations
000887930 260__ $$aCambridge$$beLife Sciences Publications$$c2020
000887930 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1605790377_29122
000887930 3367_ $$2ORCID$$aWORKING_PAPER
000887930 3367_ $$028$$2EndNote$$aElectronic Article
000887930 3367_ $$2DRIVER$$apreprint
000887930 3367_ $$2BibTeX$$aARTICLE
000887930 3367_ $$2DataCite$$aOutput Types/Working Paper
000887930 520__ $$aChimpanzees are among the closest living relatives to humans and, as such, provide a crucial comparative model for investigating primate brain evolution. In recent years, human brain mapping has strongly benefited from enhanced computational models and image processing pipelines that could also improve data analyses in animals by using species-specific templates. In this study, we use structural MRI data from the National Chimpanzee Brain Resource (NCBR) to develop the chimpanzee brain reference template Juna.Chimp for spatial registration and the macro-anatomical brain parcellation Davi130 for standardized whole-brain analysis. Additionally, we introduce a ready-to-use image processing pipeline built upon the CAT12 toolbox in SPM12, implementing a standard human image preprocessing framework in chimpanzees. Applying this approach to data from 178 subjects, we find strong evidence for age-related GM atrophy in multiple regions of the chimpanzee brain, as well as, a human-like anterior-posterior pattern of hemi-spheric asymmetry in medial chimpanzee brain regions.
000887930 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000887930 588__ $$aDataset connected to CrossRef
000887930 7001_ $$00000-0003-3480-1853$$aHopkins, William D.$$b1
000887930 7001_ $$00000-0001-6711-449X$$aSherwood, Chet C.$$b2
000887930 7001_ $$00000-0001-5406-1739$$aSchapiro, Steven J.$$b3
000887930 7001_ $$00000-0002-1175-8090$$aLatzman, Robert D.$$b4
000887930 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b5
000887930 7001_ $$00000-0002-9940-099X$$aGaser, Christian$$b6
000887930 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7
000887930 7001_ $$0P:(DE-HGF)0$$aDahnke, Robert$$b8
000887930 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b9
000887930 773__ $$0PERI:(DE-600)2687154-3$$a10.1101/2020.04.20.046680$$teLife$$x2050-084X$$y2020
000887930 8564_ $$uhttps://juser.fz-juelich.de/record/887930/files/Preprint_manuscript.pdf$$yOpenAccess
000887930 909CO $$ooai:juser.fz-juelich.de:887930$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000887930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173931$$aForschungszentrum Jülich$$b0$$kFZJ
000887930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b5$$kFZJ
000887930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
000887930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b9$$kFZJ
000887930 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000887930 9141_ $$y2020
000887930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2018$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000887930 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887930 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887930 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2018$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-08
000887930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000887930 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000887930 980__ $$apreprint
000887930 980__ $$aVDB
000887930 980__ $$aUNRESTRICTED
000887930 980__ $$aI:(DE-Juel1)INM-7-20090406
000887930 9801_ $$aFullTexts